Giant magnetoresistive sensor with a PtMnX pinning layer and...

Dynamic magnetic information storage or retrieval – Head – Magnetoresistive reproducing head

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S324110

Reexamination Certificate

active

06490140

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to a giant magnetoresistive sensor for use in a magnetic read head. In particular, the present invention relates to a giant magnetoresistive read sensor having improved thermal and magnetic stability.
Giant magnetoresistive (GMR) read sensors are used in magnetic data storage systems to detect magnetically-encoded information stored on a magnetic data storage medium such as a magnetic disc. A time-dependent magnetic field from a magnetic medium directly modulates the resistivity of the GMR read sensor. A change in resistance of the GMR read sensor can be detected by passing a sense current through the GMR read sensor and measuring the voltage across the GMR read sensor. The resulting signal can be used to recover the encoded information from the magnetic medium.
A typical GMR read sensor configuration is the GMR spin valve, in which the GMR read sensor is a multi-layered structure formed of a nonmagnetic spacer layer positioned between a ferromagnetic pinned layer and a ferromagnetic free layer. The magnetization of the pinned layer is fixed in a predetermined direction, typically normal to an air bearing surface of the GMR read sensor, while the magnetization of the free layer rotates freely in response to an external magnetic field. The resistance of the GMR read sensor varies as a function of an angle formed between the magnetization direction of the free layer and the magnetization direction of the pinned layer. This multi-layered spin valve configuration allows for a more pronounced magnetoresistive effect, i.e. greater sensitivity and higher total change in resistance, than is possible with anisotropic magnetoresistive (AMR) read sensors, which generally consist of a single ferromagnetic layer.
A pinning layer is typically exchange coupled to the pinned layer to fix the magnetization of the pinned layer in a predetermined direction. The pinning layer is typically formed of an antiferromagnetic material. In antiferromagnetic materials, the magnetic moments of adjacent atoms point in opposite directions and, thus, there is no net magnetic moment in the material.
A seed layer is typically used to promote the texture and enhance the grain growth of the free layer or pinning layer consequently grown on top of it. The seed layer material is chosen such that its atomic structure, or arrangement, corresponds with the preferred crystallographic direction of the magnetization of the free layer or pinning layer material.
Principal concerns in the performance of GMR read sensors are the thermal and magnetic stability of the GMR read sensor. When the pinning layer is exchange coupled to the pinned layer during manufacturing, the GMR read sensor must not experience diffusion between thin layers in the GMR read sensor. After the pinning layer is exchange coupled to the pinned layer to fix the magnetization of the pinned layer in a predetermined direction, a sufficient exchange coupling field, or pinning field, is required to keep the magnetization of the pinned layer unchanged during the operation of the GMR read sensor.
Key determinants of the thermal and magnetic stability of the GMR read sensor are the materials used as the pinning layer and as the seed layer in the GMR read sensor. The annealing temperature of the pinning layer material is the temperature at which the pinning and pinned layers are exchange coupled during manufacturing. It is desirable for the pinning layer material to have a low annealing temperature to control magnetic behavior and prevent diffusion between thin layers in the GMR spin valve. The blocking temperature of the pinning layer material is the temperature at which the exchange coupling disappears. It is desirable for the pinning layer material to have a high blocking temperature to prevent the magnetization of the pinned layer from changing during the operation of the GMR read sensor. Also, the seed layer material affects the strength of the exchange coupling field, or pinning strength. It is desirable for the seed layer material/pinning layer material combination to have a high pinning strength to keep the magnetization of the pinned layer unchanged.
Accordingly, there is a need for a pinning layer material with a high blocking temperature and a low annealing temperature, and for a seed layer material that, when used with the pinning layer material, produces a high pinning strength.
BRIEF SUMMARY OF THE INVENTION
The present invention is a giant magnetoresistive stack for use in a magnetic read head. The giant magnetoresistive stack includes a NiFeCr seed layer, a ferromagnetic free layer, at least one nonmagnetic spacer layer, at least one ferromagnetic pinned layer, and at least one PtMnX pinning layer, where X is selected from the group consisting of Cr, Pd, Nb, Re, Rh, Ta, Ru, Os, Zr, Hf, Ni, Co, and Fe. The free layer has a rotatable magnetic moment. The pinned layer has a fixed magnetic moment and is positioned adjacent to the PtMnX pinning layer. The spacer layer is positioned between the free layer and the pinned layer. The NiFeCr seed layer is positioned adjacent to either the free layer or the pinning layer.
In a first preferred embodiment, the seed layer is adjacent to the free layer, the free layer is a NiFe/CoFe bilayer, the spacer layer is formed of copper, the pinned layer is formed of CoFe, and the pinning layer is formed of PtMnX.
In a second preferred embodiment, the seed layer is adjacent to the free layer, the free layer is a NiFe/CoFe bilayer, the spacer layer is formed of copper, the pinned layer is a CoFe/Ru/CoFe synthetic antiferromagnet, and the pinning layer is formed of PtMnX.
In a third preferred embodiment, the seed layer is a NiFeCr/NiFe bilayer and is adjacent to the pinning layer, the pinning layer is formed of PtMnX, the pinned layer is formed of CoFe, the spacer layer is formed of copper, and the free layer is a CoFe/NiFe bilayer.
In a fourth preferred embodiment, the seed layer is a NiFeCr/NiFe bilayer and is adjacent to the first pinning layer, the first pinning layer is formed of PtMnX, the first pinned layer is a CoFe/Ru/CoFe synthetic antiferromagnet, the first spacer layer is formed of copper, the free layer is formed of CoFe, the second spacer layer is formed of copper, the second pinned layer is a CoFe/Ru/CoFe synthetic antiferromagnet, and the second pinning layer is formed of PtMnX.
In a fifth preferred embodiment, the seed layer is a NiFeCr/NiFe bilayer and is adjacent to the first pinning layer, the first pinning layer is formed of PtMnX, the first pinned layer is a CoFe/Ru/CoFe synthetic antiferromagnet, the first spacer layer is formed of copper, the free layer is a CoFe/NiFe/CoFe trilayer, the second spacer layer is formed of copper, the second pinned layer is a CoFe/Ru/CoFe synthetic antiferromagnet, and the second pinning layer is formed of PtMnX.


REFERENCES:
patent: 5852533 (1998-12-01), Miyauchi et al.
patent: 5959810 (1999-09-01), Kakihara et al.
patent: 6115224 (2000-09-01), Saito
patent: 6122151 (2000-09-01), Saito et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Giant magnetoresistive sensor with a PtMnX pinning layer and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Giant magnetoresistive sensor with a PtMnX pinning layer and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Giant magnetoresistive sensor with a PtMnX pinning layer and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2964170

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.