Music – Instruments – Electrical musical tone generation
Reissue Patent
2000-06-13
2002-04-16
Fletcher, Marlon T. (Department: 2837)
Music
Instruments
Electrical musical tone generation
C084S600000, C084S622000, C084S625000, C084S645000, C084S659000
Reissue Patent
active
RE037654
ABSTRACT:
FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION
Musical instruments are manipulated by a musician-user to articulate and produce notes of discrete tones having constant pitch. For example, a guitar has strings and a finger board with frets that divide the guitar strings into discrete lengths. By pressing a string against a fret with a finger, a musician can select equally spaced pitches. Each musical note need not be articulated separately. Some notes may be played merely by changing the pitch of a previously articulated note, and pitch may frequently be altered to glide continuously between notes.
To more fully appreciate the present invention, it is helpful to define several terms commonly used by professional musicians. “Pitch” is the subjective sensation produced by a periodic vibration having constant frequency, e.g., what may be produced by a picked (or plucked) guitar string that is under tension. The sensation of pitch is logarithmically related to the frequency of vibration. In music, discrete pitches are referred to as “notes”.
The “tone” or “timbre” of a musical note includes several components, and gives the note a distinctive character. The same note played on
a
an
organ will have a different timbre than if played on a piano. Indeed, the same note played on two pianos can exhibit different nuances of timbre, and will sound different. The timbre of an instrument playing a note is closely related to the shape of the periodic wave creating the note, which is referred to as waveshape. As such, one aspect of timbre is the manner in which the note waveshape changes with time. Timbre is often analyzed in terms of the instantaneous Fourier series components of a tone. Ordinarily these components change over time, corresponding to the change in waveshape. There are also non-harmonic components of timbre including, for example, breath noise admixed with the simple, round tone of a flute.
A listener can distinguish different instrumental timbres, such as a note from an oboe and a note from a violin. A critical aspect enabling the differentiation is the complex change that occurs within the first few milliseconds of the onset of the note (known as the “attack” time). This aspect is related to how notes are produced (or “articulated”) on different instruments. For example, a violinist articulates notes by bowing, to produce a scraping sound and a sense of the note growing from nothing, whereas a saxophonist tongues notes.
Tone synthesizers use control envelopes to simulate the interactions of pitch, volume and timbre. Control envelopes may be characterized by four associated parameters, namely attack, decay, sustain and release.
The “distance” in pitch between two notes is termed the musical “interval”. In the familiar “do-re-mi” scale, each syllable represents an interval or distance from the first note of the scale. The creation of many musical effects involves altering the pitch of a previously articulated note, and may require production in a manner different than the articulation of musical notes. Musical effects can include slurs, hammer-ons, pull-offs, blues inflections, glissandos, portamento, and vibrato. Such gestures are usually performed to move from one note of a scale to an adjacent note, or in between, the movement being referred to as the distance of a gesture.
“Blues inflection” is the musical term for a voice-like pitch bend gesture, and usually includes “blue note” pitches that are located between pitches found in standard musical scales. Most popular American music incorporates blues-type note inflections in some way, and thus a mechanism for bending notes is necessary for an electronic synthesizer used to play such music.
Professional grade musical synthesizers routinely provide some sort of pitch bend mechanism for performing continuous pitch changes, such as over a major second interval as might be produced by a guitar player by bending strings. The most common type of pitch altering device is the pitch wheel. The pitch wheel may be a user-operated biased rotary wheel with a center detente, or a rotary wheel with a dead zone in the middle. Other control mechanisms for altering pitch include spring-biased levers and joysticks. Unfortunately, such mechanisms do not generally produce lifelike pitch inflections.
On a guitar, blues inflection is performed by deflecting a guitar string sideways (laterally) along the fret after the string has been picked (e.g., caused to vibrate) by the musician. This lateral movement increases the tension on the vibrating string, and hence increases the pitch. Similarly, a skilled saxophonist may bend pitch using air pressure or lip pressure on the playing reed.
A “slide” is performed on a guitar by sliding the finger up or down the finger-board (longitudinally), after an initial note is picked. A similar effect, referred to as “glissando”, may be produced on a piano by dragging a thumb back and forth across the keys while pressing down, to cause each key to sound quickly in succession. The result is a series of additional discrete sound pitches. On a harp, such a glissando may be performed by dragging the hand across the strings, so that each sounds in succession. A similar gesture on a guitar is called a “strum”, one difference being that the notes which sound on a guitar are each spaced by several semitones, making a chord. On a harp, chords may be produced by using pedals to retune the strings.
When the hand is then dragged across the strings as when performing a glissando, the result is called an “arpeggio”. Apreggios usually traverse a wide range of dozens of notes, while a guitar strum is always six notes or less. A guitar chord may also be “plucked” as may a chord on a harp, while a chord on a piano is “struck”. Arpeggios may also be played on a piano by striking the notes of a chord in succession while alternately displacing each hand to cover a wide range of notes. However, this produces a significantly different effect than a harp arpeggio because it requires discrete motions of the fingers used to strike each note.
Some musical notes may be played by slurring a previously articulated note. “Slurring” means a musician does not produce every note anew but may instead continue from one note to the next without re-attacking, thus changing only the pitch. For example, on a saxophone, notes are slurred by opening or closing additional valves on the body of the instrument, while continuously blowing. This changes the pitch and creates a different note, but without a tongued articulation. On a violin, slurring involves placing fingers in front of or behind other fingers on the fingerboard while continuing to bow, to shorten or lengthen the effective vibrating length of the string. This changes the pitch and creates a different note, but without a bowed articulation. Guitarists slur notes similarly as violinists, but the gesture of placing a first finger on a fret in front of a second finger is called a “hammer-on”. The gesture of placing a second finger behind the first and then releasing the first is called a “pull-off”. Playing whole phrases by articulating only the first note and slurring the remaining notes is called “legato”.
In real life, gestures may be combined, either sequentially or simultaneously. Thus a skilled guitarist can perform a hammer-on followed by a glissando, or simultaneously achieve blues inflection and vibrato. A number of hammer-ons in quick succession produces a “trill”. A series of connected gestures traversing a large interval in a single direction is called a “run”. A combination of gestures involving one or more changes of direction may be referred to as a “lick” or a “riff”. These gestures are so named because each is perceivable as an individual musical event. Their separate elements become fused because there is an overarching time shape to them. This time shape or trajectory may result from a continuous change in the times between expected onset of the component gestures.
In addition, guitarists and other musicians may perform gestures within gestures. That is, they may alter the
LandOfFree
Gesture synthesizer for electronic sound device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Gesture synthesizer for electronic sound device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gesture synthesizer for electronic sound device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2889360