Multicellular living organisms and unmodified parts thereof and – Method of introducing a polynucleotide molecule into or...
Reexamination Certificate
1999-12-01
2002-06-25
Bui, Phuong T. (Department: 1638)
Multicellular living organisms and unmodified parts thereof and
Method of introducing a polynucleotide molecule into or...
C435S069100, C435S183000, C435S410000, C435S419000, C435S252300, C435S320100, C530S350000, C530S370000, C536S023600, C536S024100, C536S024330, C800S295000
Reexamination Certificate
active
06410827
ABSTRACT:
FIELD OF THE INVENTION
This invention is in the field of plant molecular biology. More specifically, this invention pertains to nucleic acid fragments encoding geranylgeranyl pyrophosphate synthase or geranylgeranyl pyrophosphate synthase-related protein in plants and seeds.
BACKGROUND OF THE INVENTION
Geranylgeranyl pyrophosphate (GGPP) synthase, also known as geranylgeranyl-diphosphate synthase, farnesyl transferase and geranylgeranyl synthetase is a key enzyme in plant terpenoid biosynthesis. The final product, GGPP, is the key precursor of several holoterpenoids such as carotenoids and meroterpenoids. One fate of GGPP is conversion to phytoene by phytoene synthase, the first committed step in carotenoid biosynthesis. Although not specific to carotenoid biosynthesis, GGPP synthase may be important in determining the total catorenoid content of a specific tissue. Expression of the GGPP synthase gene is strongly induced during the chloroplast to chromoplast transition which occurs in ripening peppers which have a high carotenoid content (Kuntz, M., et al. (1992)
Plant J
. 2:25-34).
GGPP also serves as precursor in the formation of defense-related substances like the phytoalexin casbene in castor bean and the diterpene phorbol which acts as a toxin against herbivores. GGPP is also a precursor of the important phytohormone gibberellin which regulates a variety of physiological processes that include initiation of seed germination, stimulation of stem elongation, stimulation of flowering/bolting and regulation of leaf/fruit senescence.
In animal systems, the importance of the enzyme GGPP synthase is demonstrated by the lethality of nonsense mutations in the locus that encodes the enzyme in Drosophila (Lai et al. (1998)
Genetics
149:1051-1061). In plant systems, GGPP serves as precursor to many important metabolites that the enzyme responsible for its synthesis, GGPP synthase, appears to be an attractive target for herbicide discovery and design.
At least 6 different GGPP synthases have been identified in
Arabidopsis thaliana
. Beside differences in the amino acid sequence of the proteins and the nucleotide sequence of their genes, GGPP synthases accumulate in different subcellular compartments (Zhu, X. F., et al. (1997) Plant Mol. Biol. 35:331-341).
Manipulation of the corn gene in endosperm could result in increased xanthophyll content, which has value as coloring agent in poultry feed.
SUMMARY OF THE INVENTION
The present invention relates to isolated polynucleotides comprising a nucleotide sequence encoding a first polypeptide of at least 35 amino acids that has at least 80% identity based on the Clustal method of alignment when compared to a corn geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:10. The present invention also relates to isolated polynucleotides comprising a nucleotide sequence encoding a first polypeptide of at least 50 amino acids that has at least 80% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of a corn geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:6, and a wheat geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:42. The present invention also relates to isolated polynucleotides comprising a nucleotide sequence encoding a first polypeptide of at least 50 amino acids that has at least 90% identity based on the Clustal method of alignment when compared to a corn geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:2. The present invention also relates to isolated polynucleotides comprising a nucleotide sequence encoding a first polypeptide of at least 100 amino acids that has at least 80% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of a corn geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:8, a rice geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:12, a wheat geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:28, a wheat geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:30, a rice geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:32, a rice geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:34, a soybean geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:36, a wheat geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:40 and a wheat geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:44. The present invention also relates to isolated polynucleotides comprising a nucleotide sequence encoding a first polypeptide of at least 100 amino acids that has at least 85% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of a corn geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:4, a rice geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:14, and a soybean geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:20. The present invention also relates to isolated polynucleotides comprising a nucleotide sequence encoding a first polypeptide of at least 150 amino acids that has at least 80% identity based on the Clustal method of alignment when compared to a soybean geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:24. The present invention also relates to isolated polynucleotides comprising a nucleotide sequence encoding a first polypeptide of at least 150 amino acids that has at least 90% identity based on the Clustal method of alignment when compared to a soybean geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:22. The present invention also relates to isolated polynucleotides comprising a nucleotide sequence encoding a first polypeptide of at least 200 amino acids that has at least 80% identity based on the Clustal method of alignment when compared to a soybean geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:38. The present invention also relates to isolated polynucleotides comprising a nucleotide sequence encoding a first polypeptide of at least 200 amino acids that has at least 90% identity based on the Clustal method of alignment when compared to a soybean geranylgeranyl pyrophosphate synthase polypeptide of SEQ ID NO:18. The present invention also relates to an isolated polynucleotide comprising the complement of the nucleotide sequences described above.
It is preferred that the isolated polynucleotides of the claimed invention consist of a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,25, 27, 29, 31, 33, 35, 37, 39, 41, and 43 that codes for the polypeptide selected from the group consisting of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, and 44. The present invention also relates to an isolated polynucleotide comprising a nucleotide sequences of at least 40 (preferably at least 30) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, and 43 and the complement of such nucleotide sequences.
The present invention relates to a chimeric gene comprising an isolated polynucleotide of the present invention operably linked to suitable regulatory sequences.
The present invention relates to an isolated host cell comprising a chimeric gene of the present invention or an isolated polynucleotide of the present invention. The host cell may be eukaryotic, such as a yeast or a plant cell, or prokaryotic, such as a bacterial cell. The present invention also relates to a virus, preferably a baculovirus, comprising an isolated polynucleotide of the present invention or a chimeric gene of the present invention.
The present invention relates to a process for producing an isolated host cell comprising a chimeric gene of the present invention or an isolated polynucleotide of the present invention, the process comprising either transforming or transfecting an isolated compatible host cell with a chimer
Cahoon Rebecca E.
Shen Jennie Bih-Jien
Williams Mark E.
Bui Phuong T.
E. I. du Pont de Nemours and Company
LandOfFree
Geranylgernayl pyrophosphate synthases does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Geranylgernayl pyrophosphate synthases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Geranylgernayl pyrophosphate synthases will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2899004