Geometric track and track/vehicle analyzers and methods for...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Railway vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S146000

Reexamination Certificate

active

06681160

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to determining, recording, and processing a geometry of a railroad track, determining, recording, and processing a geometry of a vehicle traveling on the track, and using such information to control operation of one or more vehicles on the track and to effectuate maintenance of the track. It finds particular application in conjunction with using the geometric information to improve operational safety and overall efficiency (e.g., fuel efficiency, vehicle wheel wear, and track wear) and will be described with particular reference thereto. It will be appreciated, however, that the invention is also amendable to other like applications.
Heretofore, track geometry systems determine and record geometric parameters of railroad tracks used by vehicles (e.g., railroad cars and locomotives) and generate an inspection or work notice for a section of track if the parameters are outside a predetermined range. Each vehicle includes a body secured to a truck, which rides on the track. Conventional systems use a combination of inertial and contact sensors to indirectly measure and quantify the geometry of the track. More specifically, an inertial system mounted on the truck senses motion of the truck in relation to the track. A plurality of transducers measure relative motion of the truck in relation to the track.
One drawback of conventional systems is that a significant number of errors occur from transducer failures. Furthermore, significant errors also result from a lack of direct measurements of the required quantities in a real-time manner.
Furthermore, conventional inertial systems typically use off-the-shelf gyroscopes and other components, which are designed for military and aviation applications. Such off-the-shelf components are designed for high rates of inertial change found in military and aircraft applications. Therefore, components used in conventional systems are poorly suited for the relatively low amplitude and slow varying signals seen in railroad applications. Consequently, conventional systems compromise accuracy in railroad applications.
The current technology in locomotive traction control is based on an average North American curve of approximately 2.5 degrees. If real-time rail geometry data, including current curvature and cross-level (i.e., superelevation), can be provided, then the drive system can be optimized for current track conditions, resulting in maximum efficiency.
The relationship between the tractive force that drives the locomotive, or other type of vehicle, forward on a rail is expressed by the following equation:
F
Traction
=F
Normal
*u
where u is the coefficient of static friction and F
Normal
is the normal force at the rail/wheel interface.
Balance speed is the optimum speed of the vehicle at which the resultant force vector is normal to the rail. By maintaining a vehicle at its balanced speed point, F
Normal
is maximized. Accordingly, F
Traction
is also maximized when the vehicle is operated at its balanced speed. Furthermore, by maintaining the drive wheels at the highest point of static friction while operating at the balanced speed, the maximum amount of available tractive force (F
Traction
) is achieved.
A small change in the velocity (V) through a curve results in significant changes in the lateral (centripetal) forces, as shown in the following equation:
F
Lateral
=Mass*
A
lateral
,
where
A
lateral
=(1
/R
curve
)*
V
{circumflex over ( )}2
No current system provides the information necessary to compute the balance speed and therefore determine the most efficient operation of the train. Additionally, no current device or system allows for the inspection of rail track structures, determination of track geometric conditions, and identification of track defects in real-time. Furthermore, no current device or system communicates such information to other locomotive control mechanisms (e.g., locomotive control computers) in real-time allowing for real-time locomotive control.
SUMMARY OF THE INVENTION
The invention provides a new and improved apparatus and method, which overcomes the above-referenced problems and others. The invention acquires and analyzes rail geometry information in real-time to provide drive control systems of trains and autonomous vehicles with information so locomotive control circuits can reduce flanging forces at the wheel/rail interface, thereby increasing the locomotive tractive force on a given piece of track. The net result is increased fuel efficiency, reduced vehicle wheel wear, and reduced rail wear. This optimizes the amount of tonnage hauled per unit cost for fuel, rail maintenance, and wheel maintenance.
Through inter-train communication, relevant track defect and traction control information can be communicated to lead units and helper units (i.e., locomotives) in the train. This permits the lead units and helper units to adjust control strategies to improve operational safety and optimize overall efficiency of the train.
Where the rail geometry information is collected and analysed in real-time against track standards, the results of the analysis are communicated to a display device (for use by the engineer), locomotive control computers, and a centralized control office as corrective measures, optizimized control strategies, and recommended courses of action. The locomotive control computers respond to such communications by taking appropriate actions to reduce risks of derailment and other potential hazards, as well as improving the overall efficiency of the train. The remote communications to the centralized control office also provide coordinated dispatch of personnel to perform maintenance for defects detected by the system, as well as a centralized archive of defect data for historical comparison.
In one embodiment, a track analyzer included on a vehicle traveling on a track is provided. In another embodiment, a track/vehicle analyzer included on a vehicle traveling on a track is provided. Methods for analyzing the track on which the vehicle is traveling in real-time using the track analyzer and the track/vehicle analyzer are provided. Additionally, several methods for improving the operational safety and economic efficiencies (e.g., fuel efficiency, vehicle wheel wear, and track wear) of the track and vehicles and/or trains traveling on the track using the track/vehicle analyzer are provided. A method for dynamically modeling behavior of a vehicle traveling on a track using the track/vehicle analyzer is also provided.
In one aspect of the invention, the track analyzer includes a track detector for determining track parameters comprising at least one parameter of a group including a grade of the track, a superelevation of the track, a gauge of the track, and a curvature of the track and a computing device for determining in real-time if the track parameters are within acceptable tolerances, and, if any one of the track parameters are not within acceptable tolerances, generating corrective measures.
In another aspect of the invention, the track/vehicle analyzer includes a track detector for determining track parameters, a vehicle detector for determining vehicle parameters comprising at least one parameter of a group including a speed of the vehicle relative to the track, a distance the vehicle has traveled on the track, forces on a drawbar of the vehicle, a set of global positioning system coordinates for the vehicle, and a set of orthogonal accelerations experienced by the vehicle, and a computing device for determining in real-time if the track parameters and the vehicle parameters are within acceptable tolerances and, if any one of the track parameters or the vehicle parameters are not within acceptable tolerances, generating corrective measures.
In still another aspect of the invention, a track/vehicle analyzer includes a track detector for determining track parameters, a vehicle detector for determining vehicle parameters, a computing device for a) determining a plurality of calculated parameters as a function of the track parame

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Geometric track and track/vehicle analyzers and methods for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Geometric track and track/vehicle analyzers and methods for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Geometric track and track/vehicle analyzers and methods for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3222606

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.