Geographical web browser, methods, apparatus and systems

Telecommunications – Radiotelephone system – Special service

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S995190, C340S995190, C707S793000, C707S793000

Reexamination Certificate

active

06522875

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to mobile data networks. More particularly, the invention relates to a network application program such as a web browser which allows a user to navigate a set of network web pages based on a user's location and the setting of one or more auxiliary control parameters.
2. Description of the Related Art
The concept of providing a local broadcast domain through which a mobile unit passes is well known. For example, when on a cross-country trip, an automobile passes through various areas of FM radio coverage. In the art of cellular communications it has become common practice to reduce the size of a given broadcast domain. This allows frequencies to be efficiently reused. In spread spectrum communications, it is also recognized that multiple users may share frequency within a small-area broadcast domain using differently encoded waveforms for different users. Companies such as Nokia Inc. have proposed systems whereby information is broadcast to mobile subscribers within a telecommunications cell. In some envisioned methods, this broadcast information is accessible from a network application such as a web browser. A mobile subscriber is able to click on an icon and view, for example, restaurants located in the vicinity of the telecommunications cell occupied by the mobile subscriber.
Recently systems have been introduced whereby a mobile unit such as an automobile passes through a series of very small broadcast domains. Each broadcast domain is called a “picocell”. For example, as a mobile user in an automobile travels along a road, the automobile encounters a sequence of network air-interface transceivers that are mounted on telephone poles and periodically placed along the roadside. The vehicle can maintain a network connection by accessing the nearest air interface at any given time. Similar picocell based systems allow a user walking through a building or campus environment to stay connected to a wireless local area network (LAN). The term “air interface” is used in the art to mean a set of physical layer protocols used to communicate information via radio and other forms of wireless connections.
Data networks are also available whereby a mobile unit maintains a wireless network connection with a central server. For example, cellular digital packet data (CDPD), Internet packet Data Network (IPDN) and related technologies exist to allow a mobile unit to interact with an application such as a database. In other systems, radio frequency (RF) modems allow a mobile unit to maintain a network connection to stay connected to the Internet or some other type of network. For example, Global System Mobile (GSM) and Personal Communication Systems (PCS) technologies also allow wireless data connections to be established. Pico-cell based systems also provide wireless networks for similar use within buildings and campus environments.
A co-pending application, serial number #09/167,698 by Eric M. Dowling and Mark N. Anastasi is incorporated herein by reference and is referred to as the “Dowling reference” hereinafter. In the Dowling reference, a method is disclosed to allow a mobile unit to maintain a virtual session with a central server. In a virtual session, an application layer program maintains a communication session in the absence of a physical communication path. When the session is inactive, no communication path exists. When data needs to be communicated, a physical connection is automatically established. This allows a remote unit to maintain a presence with a central server using, for example, a cellular connection. The virtual session only establishes the cellular connection when it is actually being used for network communications. In the context of the present disclosure, the “remote unit” as defined in the Dowling reference is termed a “mobile unit.” In a virtual-session based system, the mobile unit uses a cellular connection to maintain a virtual session with a network server attached to a network. The mobile unit runs an application program such as a web browser to communicate with a web site, an Internet site, an intranet site or other application program provided by the network server. Only when the user is actively selecting a link or downloading information is a physical communication path established to support the virtual session.
Another known technology is the global positioning system (GPS). GPS receivers use telemetry information broadcast form satellites to calculate a set of grid coordinates to provide positional information. A mobile unit equipped with a GPS receiver can thereby maintain a fix on its geographical position.
Systems have been introduced by several automobile manufacturers that use a GPS receiver to control the display of digital map information in automobiles. The map data includes locations of various types of business establishments. The map and business establishment data for these systems is stored in a PROM or EPROM memory. Typically these storage devices contain data pertinent to one state. In order to update this data the owner of the vehicle must return to the dealer once a year to have change the PROM or reprogram the EPROM. A traveler wishing to travel between states must purchase additional memory modules programmed with data for the states to be traveled in advance of an out-of-state trip. While the aforementioned technologies provide valuable services and capabilities, these systems are lacking in various ways. For example, consumer radio broadcast technology still uses large broadcast domains such as AM and FM radio stations. While next generation systems have been proposed that will effectively broadcast information such as local advertisements and service announcements to vehicles or pedestrians passing through a telecommunications cell, small locality, no technology exists to provide local broadcast information to automatically control a network application such as a web browser by selectively filtering broadcast information using a packet filter. Current approaches require a user to select an icon or navigate a browser application via conventional means to access information specific to a local area. Also, systems do not exist which allow information processed by a GPS receiver to control the flow of information on a network connection with a server. For example, no web browsers exist which process GPS transmissions to determine geographical position, and use this geographical position information to control what web pages are displayed by the browser. Likewise, no systems exist which accept locally broadcast transmissions such as from a local telephone pole and use this information to control information displayed by the web browser.
It would be desirable to have a system that could provide a user with a means to receive information from a first connection to a network based on the user's position. It would be desirable to allow an application such as a web browser to control a flow of information comprising web pages based on a locally received broadcast. It also would be desirable to allow an application such as a web browser to control the flow of web pages based on processed GPS data. It would be desirable to have a mobile unit that could receive one or more transmissions via a second connection and then generate a request packet on a first connection to navigate an application program such as a web browser. It also would be desirable to have a network server that is operative to receive request packets that are generated based on information received from these transmissions.
Systems currently envisioned by telecommunication firms rely on the knowledge of the user's operating wireless cell. As a position or location measurement system, this knowledge is coarse. Further, as a means for regulating pertinent information, reliance solely on cell data is limiting. Cell coordinates are too coarse to allow data such as direction of travel, speed of travel, etc to be used to predict items of interest to the user. It would there

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Geographical web browser, methods, apparatus and systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Geographical web browser, methods, apparatus and systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Geographical web browser, methods, apparatus and systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3174588

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.