Geodesic dome and method of constructing same

Static structures (e.g. – buildings) – Processes – Barrier construction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S081300, C052S081400, C052S639000, C052S652100, C052S745070, C052SDIG001

Reexamination Certificate

active

06295785

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATION
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
REFERENCE TO MICROFICHE APPENDIX
Not applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to building structures. More particularly, the present invention relates to geodesic domes. Even more particularly, the present invention relates to a method of constructing a geodesic dome based on an octahedron.
2. Prior Art
The prior art has taught geodesic domes in which the pattern of construction is based on closed three-dimensional shapes other than an octahedron. For example, in U.S. Pat. Nos. 2,682,235; 2,914,074; and 3,203,144, Fuller teaches a geodesic dome based on an icosahedron. In U.S. Pat. No. 3,197,927, Fuller teaches a geodesic dome based on a dodecahedron or a tricontahedron in addition to an icosahedron.
Yacoe, U.S. Pat. No. 4,679,361, teaches a polyhedral structure that approximates a sphere. The polyhedral structure has a plurality of polygonal faces, at least two of which are regular polygons and at least half the remainder of which are non-equilateral hexagons or pentagons. Each vertex of the polyhedron is a junction of three or four polygonal edges. Each polygonal edge is tangent to the approximated sphere at one point.
Bergman, U.S. Pat. No. 4,719,72.6, teaches a construction system for forming icosahedral structures from a series of shells. Each shell utilizes a plurality of octahedrons and tetrahedrons.
Lalvani, U.S. Pat. No. 4,723,382, teaches a construction system for forming icosahedral structures. The system utilizes four triangles of varying sizes and shapes and six parallelograms of varying sizes and shapes that are combined to form tetrahedral, octahedral, half-octahedral, truncated tetrahedral, cuboctahedral, truncated octahedral, rhombohedral, and parallelepiped members. These members are then combined to form the icosahedral structure.
Reilly, U.S. Pat. No. 5,411,047, teaches a tent formed of a skin draped over a support structure. The support structure is formed of a plurality of elongated members, such as pipes or the like, that join to form a plurality of patterns. These patterns are based on four-, six-, or eight-sided geodetic support structures that have common apical coupling points.
It is to be appreciated that none of these references teaches a geodesic dome based on an octahedron. A geodesic dome based on an octahedron is desirable because it is easier to divide into halves and other fractional sections, and thus to construct fractional geodesic domes from, than is a geodesic dome based on an icosahedron, a dodecahedron, a tricontahedron, or any other three-dimensional shape. The present invention, as detailed hereinbelow, presents such an octahedron-based geodesic dome.
BRIEF SUMMARY OF THE INVENTION
As used herein, the term “geodesic dome” refers to a structure approximating a sphere or a portion thereof, such as a hemisphere, a quarter sphere, or another portion of a sphere. The term “full geodesic dome” refers to a geodesic dome that specifically approximates a sphere, rather than approximating a portion thereof.
The present invention provides a method of constructing a geodesic dome and a geodesic dome constructed according to the method. Generally, the method comprises the steps of:
(a) generating a mathematical model of a geodesic dome, the method comprising the steps of:
(1) generating M base triangles in the form of a closed three-dimensional shape, each base triangle existing in a plane, M being a positive integer greater than three;
(2) defining a center point within the closed three-dimensional shape, the center point being equidistant from each of the vertices of each of the base triangles;
(3) defining a geodesic radius as the distance between the center point and any of the vertices of any of the base triangles;
(4) subdividing each leg of each of the base triangles into N segments of equal length, N being a positive integer greater than one, thus defining N+1 intersections along each leg of each of the base triangles;
(5) connecting each intersection defined in step (4) to two corresponding intersections within the same base triangle, thus generating N
2
smaller triangles within each base triangle;
(6) generating an interior line between each vertex of each of the smaller triangles and the center point;
(7) extending each of the interior lines generated in step (6) through the plane of the base triangle in which the smaller triangle exists until each of the interior lines as extended outside the base triangle is the same length as the geodesic radius, each extended line terminating in an endpoint opposite the center point; and
(8) connecting each endpoint defined in step (7) to each other endpoint generated in step (7) adjacent to the line end by an exterior line, thus generating a substantially curved surface comprising N
2
*M triangles, the substantially curved surface defining a mathematical model of a geodesic dome;
(b) fabricating a plurality of components with which to form a geodesic dome according to the model; and
(c) fastening the components to each other according to the model.
Preferably, M=8, N=8, the base triangles are equilateral triangles, and the three-dimensional shape is a regular octahedron. Thus, eight base equilateral triangles are generated in the first step; each leg of each base triangle is divided into eight segments with nine intersections in the fourth step; 64 smaller triangles per base triangle are generated in the fifth step; the geodesic dome has 512 triangles on the surface thereof; etc. The higher N is, the more closely the geodesic dome created by this method approximates a sphere or a portion thereof.
For a more complete understanding of the present invention, reference is made to the following detailed description and accompanying drawings. In the drawings, like reference characters refer to like parts through the several views, in which:


REFERENCES:
patent: 3392495 (1968-07-01), Ahern et al.
patent: 4026078 (1977-05-01), Ahern et al.
patent: 4092810 (1978-06-01), Summer
patent: 4160345 (1979-07-01), Nalick
patent: 4187613 (1980-02-01), Ivers et al.
patent: 4241550 (1980-12-01), Sumner
patent: 4703594 (1987-11-01), Reber
patent: 4729197 (1988-03-01), Miller
patent: 5452555 (1995-09-01), Lee
patent: 5704169 (1998-01-01), Richter
patent: 5907931 (1999-06-01), Sun

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Geodesic dome and method of constructing same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Geodesic dome and method of constructing same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Geodesic dome and method of constructing same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2572033

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.