Genes from the 20Q13 amplicon and their uses

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C436S064000, C536S023100, C536S024310

Reexamination Certificate

active

06808878

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention pertains to the field of cytogenetics. More particularly this invention pertains to the identification of genes in a region of amplification at about 20q13 in various cancers. The genes disclosed here can be used as probes specific for the 20q13 amplicon as well as for treatment of various cancers.
Chromosome abnormalities are often associated with genetic disorders, degenerative diseases, and cancer. In particular, the deletion or multiplication of copies of whole chromosomes or chromosomal segments, and higher level amplifications of specific regions of the genome are common occurrences in cancer. See, for example Smith, et al.,
Breast Cancer Res. Treat
., 18: Suppl. 1: 5-14 (1991, van de Vijer & Nusse,
Biochim. Biophys. Acta
. 1072: 33-50(1991), Sato, et al.,
Cancer. Res
., 50: 7184-7189 (1990). In fact, the amplification and deletion of DNA sequences containing proto-oncogenes and tumor-suppressor genes, respectively, are frequently characteristic of tumorigenesis. Dutrillaux, et al.,
Cancer Genet. Cytogenet
., 49: 203-217 (1990). Clearly, the identification of amplified and deleted regions and the cloning of the genes involved is crucial both to the study of tumorigenesis and to the development of cancer diagnostics.
The detection of amplified or deleted chromosomal regions has traditionally been done by cytogenetics. Because of the complex packing of DNA into the chromosomes, resolution of cytogenetic techniques has been limited to regions larger than about 10 Mb; approximately the width of a band in Giemsa-stained chromosomes. In complex karyotypes with multiple translocations and other genetic changes, traditional cytogenetic analysis is of little utility because karyotype information is lacking or cannot be interpreted. Teyssier, J. R.,
Cancer Genet. Cytogenet
., 37: 103 (1989). Furthermore, conventional cytogenetic banding analysis is time consuming, labor intensive, and frequently difficult or impossible.
More recently, cloned probes have been used to assess the amount of a given DNA sequence in a chromosome by Southern blotting. This method is effective even if the genome is heavily rearranged so as to eliminate useful karyotype information. However, Southern blotting only gives a rough estimate of the copy number of a DNA sequence, and does not give any information about the localization of that sequence within the chromosome.
Comparative genomic hybridization (CGH) is a more recent approach to identify the presence and localization of amplified/deleted sequences. See Kallioniemi, et al.,
Science
, 258: 818 (1992). CGH, like Southern blotting, reveals amplifications and deletions irrespective of genome rearrangement. Additionally, CGH provides a more quantitative estimate of copy number than Souther blotting, and moreover also provides information of the localization of the amplified or deleted sequence in the normal chromosome.
Using CGH, the chromosomal 20q13 region has been identified as a region that is frequently amplified in cancers (see, e.g. Kallioniemi et al.,
Genomics
, 20: 125-128 (1994)). Initial analysis of this region in breast cancer cell lines identified a region approximately 2 Mb on chromosome 20 that is consistently amplified.
SUMMARY OF THE INVENTION
The present invention relates to the identification of a narrow region (about 606 kb) within a 2 Mb amplicon located at about chromosome 20q13 (more precisely at 20q13.2) that is consistently amplified in primary tumors. In addition, this invention provides cDNA sequences from a number of genes which map to this region. These sequences are useful as probes or as probe targets for monitoring the relative copy number of corresponding sequences from a biological sample such as a tumor cell. Also provided is a contig (a series of clones that contiguously spans this amplicon) which can be used to prepare probes specific for the amplicon. The probes can be used to detect chromosomal abnormalities at 20q13.
Thus, in one embodiment, this invention provides a method of detecting a chromosome abnormality (e.g., an amplification or a deletion) at about position FLpter 0.825 on human chromosome 20 (20q13.2). The method involves contacting a chromosome sample from a patient with a composition consisting essentially of one or more labeled nucleic acid probes each of which binds selectively to a target polynucleotide sequence at about position FLpter 0.825 on human chromosome 20 under conditions in which the probe forms a stable hybridization complex with the target sequence; and detecting the hybridization complex. The step of detecting the hybridization complex can involve determining the copy number of the target sequence. The probe preferably comprises a nucleic acid that specifically hybridizes under stringent conditions to a nucleic acid selected from the nucleic acids disclosed here. Even more preferably, the probe comprises a subsequence selected from sequences set forth in SEQ. ID. Nos. 1-10 and 12. The probe is preferably labeled, and is more preferably labeled with digoxigenin or biotin. In one embodiment, the hybridization complex is detected in interphase nuclei in the sample. Detection is preferably carried out by detecting a fluorescent label (e.g., FITC, fluorescein, or Texas Red). The method can further involve contacting the sample with a reference probe which binds selectively to a chromosome 20 centromere.
This invention also provides for two new genes, ZABC1 and 1b1, in the 20q13.2 region that are both amplified and overexpressed in a variety of cancers. ZABC1 is a putative zinc finger protein. Zinc finger proteins are found in a variety of transcription factors, and amplification or overexpression of transcription factors typically results in cellular mis-regulation. ZABC1 and 1b1 thus appear to play an important role in the etiology of a number of cancers.
This invention provides for a new human cyclophilin nucleic acid (SEQ ID NO 13). Cyclophilin nucleic acids have been implicated in a variety of cellular processes, including signal transduction.
This invention also provides for proteins encoded by nucleic acid sequences in the 20q13 amplicon (SEQ. ID. Nos: 1-10 and 12-13) and subsequences, more preferably subsequences of at least 10 amino acids, preferably of at least 20 amino acids and most preferably of at least 30 amino acids in length. Particularly preferred subsequences are epitopes specific to the 20q13 proteins, more preferably epitopes specific to the ZABC1 and 1b1 proteins. Such proteins include, but are not limited to isolated polypeptides comprising at least 20 amino acids from a polypeptide encoded by the nucleic acids of SEQ. ID No. 1-10 and 12-13 or from the polypeptide of SEQ. ID. No. 11 wherein the polypeptide, when presented as an immunogen, elicits the production of an antibody which specifically binds to a polypeptide selected from the group consisting of a polypeptide encoded by the nucleic acids of SEQ. ID No. 1-10 and 12-13 or from the polypeptide of SEQ. ID. No. 11, where the polypeptide does not bind to antisera raised against a polypeptide selected from the group consisting of a polypeptide encoded by the nucleic acids of SEQ. ID No. 1-10 and 12-13 or from the polypeptide of SEQ. ID. No. 11 which has been fully immunosorbed with a polypeptide selected from the group consisting of a polypeptide encoded by the nucleic acids of SEQ. ID No. 1-10 and 12-13 or from the polypeptide of SEQ. ID. No. 11. In preferred embodiments, the polypeptides of the invention hybridize to antisera raised against a polypeptide encoded by those encoded by SEQ ID NOs. 1-13, where the antisera has been immunosorbed with the most structurally related previously known polypeptide. For example, a polypeptide of the invention binds to antisera raised against a polypeptide encoded by SEQ ID NO. 13, wherein the antisera has been immunosorbed with a rat or mouse cyclophilin polypeptide (Rat cyclophilin nucleic acids are known; see, GenBank™ under accession No. M19533; Mouse cyclophilin nucleic acids are known; see, GenBank™ under accession No. 506

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Genes from the 20Q13 amplicon and their uses does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Genes from the 20Q13 amplicon and their uses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Genes from the 20Q13 amplicon and their uses will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3272774

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.