Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or...
Reexamination Certificate
1999-04-30
2001-12-25
Brusca, John S. (Department: 1635)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
C435S006120, C435S018000, C435S183000, C435S199000, C530S350000
Reexamination Certificate
active
06333148
ABSTRACT:
TECHNICAL FIELD
The present invention relates to poly(ADP-ribose) glycohydrolases (PARGs) and peptides having poly(ADP-ribose) glycohydrolase activity. In addition, the invention also relates to antibodies, including monoclonal antibodies and antibody fragments, that have specific interaction with epitopes present on poly(ADP-ribose) glycohydrolases. Methods of treatment and diagnosis using the poly(ADP-ribose) glycohydrolases, and antibodies specific for poly(ADP-ribose) glycohydrolases are disclosed. The present invention has implications for the treatment of neoplastic disorder, reperfusion following ischemia, neurological disorders, and related conditions.
BACKGROUND OF THE INVENTION
Genomic damage, if left unrepaired, can lead to malignant transformation, or cell death by senescence (aging), necrosis or apoptosis. Among the variables that can affect the ultimate biological consequence of DNA damage to a particular cell are (i) the amount, type, and location of the DNA damage and (ii) the efficiency and bioavailability of the cellular DNA repair mechanism.
The activation of poly(ADP-ribose) polymerase (PARP) by DNA strand breaks is often one of the first cellular responses to DNA damage. PARP catalyzes the conversion of nicotinamide adenine dinucleotide (NAD) to multi-branched polymers containing up to 200 ADP-ribose residues. Increases in polymer levels of more than 100-fold may occur within minutes of DNA damage. Once synthesized, polymers are rapidly turned over, being converted to free ADP-ribose by the action of poly(ADP-ribose) glycohydrolase (PARG) (1). An ADP-ribosyl protein lyase has been proposed to catalyze removal of protein-proximal ADP-ribose monomers (2).
FIG. 1
illustrates these processes schematically.
The process of activating PARP upon DNA damage can rapidly lead to energy depletion because each ADP-ribose unit transferred by PARP consumes one molecule of NAD, which in turn, requires six molecules of ATP to regenerate NAD. Additionally, NAD is a key carrier of electrons needed to generate ATP via electron transport and oxidative phosphorylation or by glycolysis. The overactivation of PARP due to substantial DNA damage can significantly deplete the cellular pools of NAD and ATP (3). ADP-ribose polymer metabolism, and thus PARP and PARG have been linked to the enhancement of DNA repair (4), limitation of malignant transformation (5), enhancement of necrotic cell death (6), and involvement in programmed cell death (7). To date, studies of the structure and function of the enzymes of ADP-ribose polymer metabolism have been mainly limited to PARP (8). Little is known about the function and regulation of PARG.
BRIEF SUMMARY OF THE INVENTION
As embodied and broadly described herein, the present invention is directed to nucleic acids molecules, peptides, methods, vectors and antibodies that are related to the poly(ADP-ribose) glycohydrolase (PARG) enzyme.
One embodiment of the invention is directed to an isolated and purified nucleic acid molecule or nucleic acid molecule analog comprising a sequence that encodes a polypeptide having poly(ADP-ribose) glycohydrolase (PARG) activity. The nucleic acid molecule may encode the complete full-length PARG gene or a fragment of the PARG gene. The nucleic acid molecule may be DNA, RNA or peptide nucleic acid (PNA). The nucleic acid molecule can be linear, such as, for example, an isolated fragment or a linear phage DNA. In addition, the isolated nucleic acid molecule may be circular, such as for example in a plasmid. The nucleic acid molecule may also be a single stranded DNA or RNA such as the single stranded DNA or RNA in a single stranded DNA virus or single stranded RNA virus. The nucleic acid molecule may be of yeast, insect or mammalian origin.
The nucleic acid molecule of the invention, may be of mammalian origin, such as, for example of bovine or murine origin. In a preferred embodiment of the invention, the nucleic acid molecule may be of human origin. While the sequence of the nucleic acid molecule is of mammalian origin, the nucleic acid molecule may be replicated in another organism such as an insert in a viral genome, a plasmid in a bacterium or a 2-micron plasmid in a yeast.
Preferably, the nucleic acid molecule has, a high degree of sequence similarity with a sequence shown in SEQ ID NO: 1 (Genbank Accession Number U78975), SEQ ID NO: 3 (Genbank Accession Number AF005043), SEQ ID NO: 5 (Genbank Accession Number AF079557), SEQ ID NO: 7 (Genbank Accession Number AF079556) or SEQ ID NO: 9 (Genbank Accession Number CEF20C5). The high degree of sequence similarity may be, for example, about 70%, preferably about 80%, even more preferably about 90% and most preferably substantially identical such as for example about 100% identity.
The nucleic acid molecule that encodes a polypeptide having poly(ADP-ribose) glycohydrolase (PARG) activity may be single or double stranded nucleic acid molecule of any length such as, for example, about 20 bases in length, about 30 bases in length, about 40 bases in length, about 50 bases in length, about 100 bases in length, about 200 bases in length, about 500 bases in length, about 1000 bases in length, about 1500 bases in length, about 2000 bases in length, about 3000 bases in length. It is understood that “bases” in this patent application means “basepairs” when referring to double stranded nucleic acid molecules and bases when referring to single stranded nucleic acid molecules. In a preferred embodiment of the invention, the nucleic acid molecule may be at least about 1000 base or basepairs long and have at least about 80% sequence similarity with a sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 or SEQ ID NO: 9.
In one embodiment of the invention, the nucleic acid molecule may have sequence similarity to one region of the PARG sequence. The region may be, for example, from about base residue 2113 to about residue 3105 of SEQ ID NO: 3. Alternatively, the region may be, from residue 1240 to about residue 3105 of SEQ ID NO: 3 or from residue 175 to about residue 3105 of SEQ ID NO: 3.
Another embodiment of the invention is directed to the expression and overexpression of PARG in a cell. Expression vectors may mediate the expression of a polypeptide with poly (ADP-ribose) glycohydrolase (PARG) enzyme activity. Expression systems and expression vectors are known in the art. For example, one expression vector may comprise a regulatory sequence which is operatively linked to a nucleotide sequence at least about 1000 base pairs in length, which has at least 70% sequence similarity with a sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 or SEQ ID NO: 9. In a preferred embodiment, the sequence similarity is at least about 80% identity, more preferably at least about 90% identity and most preferably about 100% identity. The expression vector may be any expression vector that is capable of directing expression of a gene in a host cell including, prokaryotic, eukaryotic, mammalian and viral vector. Examples of such vectors include pCMV-Script cytomeglovirus expression vectors for expression in mammalian cells, pESP and pESC vectors for expression in
S. pombe
and
S. cerevesiae
, pET vectors for expression in bacteria, pSPUTK vectors for high-level transient expression, and pPbac and pMbac vectors for expression in fall army worm (SF9) cells. Such vectors are available commercially from suppliers such as, for example, Invitrogen (Carlsbad, Calif.) or Stratagene (La Jolla, Calif.). In the use of viral vectors, it is understood that defective viral vectors—vectors that are genetically engineered to deliver a gene or gene product to a host but which cannot replicate in a host is preferred. Procedures for the practice of in vitro and in vivo expression are well known to those of skill in the art and are further available with the specific expression products and cell lines from commercial suppliers.
Another embodiment of the invention is directed to a host cell transformed with a vector containing a nucleic acid molecule with a sequence that
Amé Jean-Christophe
Jacobson Elaine L.
Jacobson Myron K.
Lin Winston
Brusca John S.
Fulbright & Jaworski LLP
Lacourciere Karen A
University of Kentucky Research
LandOfFree
Genes encoding several poly (ADP-ribose) glycohydrolase... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Genes encoding several poly (ADP-ribose) glycohydrolase..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Genes encoding several poly (ADP-ribose) glycohydrolase... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2559491