Multicellular living organisms and unmodified parts thereof and – Nonhuman animal – Transgenic nonhuman animal
Patent
1995-06-05
2000-12-19
Hauda, Karen M.
Multicellular living organisms and unmodified parts thereof and
Nonhuman animal
Transgenic nonhuman animal
800 4, 800 6, 800 8, 800 21, 800 25, 800 22, A61K 4800
Patent
active
061629634
ABSTRACT:
The subject invention provides non-human mammalian hosts characterized by inactivated endogenous Ig loci and functional human Ig loci for response to an immunogen to produce human antibodies or analogs thereof. The hosts are produced by multiple genetic modifications of embryonic cells in conjunction with breeding. Different strategies are employed for recombination of the human loci randomly or at analogous host loci. Chimeric and transgenic mammals, particularly mice, are provided, having stably integrated large, xenogeneic DNA segments. The segments are introduced by fusion with yeast spheroplasts comprising yeast artificial chromosomes (YACs) which include the xenogeneic DNA segments and a selective marker such as HPRT, and embryonic stem cells.
REFERENCES:
patent: 4950599 (1990-08-01), Bertling
patent: 4959313 (1990-09-01), Taketo
patent: 5204244 (1993-04-01), Fell et al.
patent: 5545806 (1996-08-01), Lonberg et al.
patent: 5545807 (1996-08-01), Surani
patent: 5569825 (1996-10-01), Lonberg et al.
patent: 5591669 (1997-01-01), Krimpenfort
Huxley Genomics 9: 742, 1991, Oct. 17, 1997.
Hooper Nature 326: 292, 1987, Oct. 17, 1997.
Pachnis PNAS 87: 5109, 1990, Oct. 17, 1997.
Traver PNAS 86: 5898, 1989, Oct. 17, 1997.
Shimizu PNAS 86: 8020, 1989, Oct. 17, 1997.
Berman EMBO J 7(3):727, 1908, Oct. 17, 1997.
Bruggemann PNAS 86: 6709, 1989, Oct. 17, 1997.
Cox Declaration, from U.S. application No. 07/990,860 submitted in U.S. application No. 08/112,842, Oct. 17, 1997.
Morrison Nature 368: 812, 1994, Oct. 17, 1997.
Green Nature Genetics 7: 13, 1994, Oct. 17, 1997.
Taki Science 262: 1268, 1993, Oct. 17, 1997.
Dorfman, Nickolas A., 1985, "The Optimal Technological Approach to the Development of Human Hybridomas," Journal of Biological Response Modifiers 4:213-239.
Taggart et al., 1983, "Stable Antibody-Producing Murine Hybridomas," Science 219: 1228-1230.
Albertson, et al., "Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents," Proc. Natl. Acad. Sci. U.S.A. 87:4256-4260 (1990).
Ayares, et al., "Sequence homology requirements for intermolecular recombination in mammalian cells," Proc. Natl. Acad. Sci. U.S.A. 83:5199-5203 (1986).
Blankenstein, et al., "Immunoglobulin V.sub.h region genes of the mouse are organized in overlapping clusters" Eur. J. Immunol. 17:1351-1357 (1987).
Brinster, et al., "Introns increase transcriptional efficiency in transgenic mice," Proc. Natl. Acad. Sci. U.S.A. 85:836-840 (1988).
Brownstein, et al., "Isolation of single-copy human genes from a library of yeast artificial chromosomes", Science 244:1348-1351 (1989).
Bruggemann, et al., "Construction, function and immunogenicity of recombinant monoclonal antibodies," Behring Inst. Mitt. 87:21-24 (1990).
Bruggemann, et al., "Human antibody production in transgenic mice: expression from 100 kb of the human IgH locus," Eur. J. Immunolog. 21:1323-1326 (1991).
Bruggemann, et al., "A repertoire of monoclonal antibodies with human heavy chains from transgenic mice," Proc. Natl. Acad. Sci. U.S.A. 86:6709-6713 (1989).
Burke, et al., "Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors," Science 236:806-812 (1987).
Buttin, et al., "Exogenous Ig rearrangement in transgenic mice: a new strategy for human monoclonal antibody production," Trends in Genetics 3(8):205-206 (1987).
Davies, et al., 1992, "Targeted alterations in yeast artificial chromosomes for inter-species gene transfer," Nucleic Acids Res. 20:2693-2698 (1992).
Dorfman, N.A. "The optimal technological approach to the development of human hybridomas," Journal of Biological Response Modifiers 4:213-239 (1986).
Eliceiri, et al., "Stable integration and expression in mouse cells of yeast artificial chromosomes harboring human genes," Proc. Natl. Acad. Sci. U.S.A. 88:2179-2183 (1991).
Garza, et al., "Mapping the drosophilia genome with yeast artificial chromosomes with yeast artificial chromosomes", Science 246:641-646 (1989).
Gnirke, et al., "Cloning and in vivo expression of the human GART gene using yeast artificial chromosomes", EMBO Journal 10(7):1629-16-14 (1991).
Huxley, et al., "The human HPRT gene on a yeast artificial chromosome is functional when transferred to mouse cells by cell fusion," Genomics 9:742-750 (1991).
Koller, et al., "Inactivating the .beta.2-microglobulin locus in mouse embryonic stem cells by homologous recombination" Proc. Nat'l Acad. Sci. 86:8932-8935 (1989).
Kucherlapati, R., "Homologous recombination in mammalian somatic cells," Prog. Nucleic Acid Res. Mol. Biol. 36:301-310 (1989).
Matsuda, et al., "Structure and physical map of 64 variable segments in the 3' 0.8- megabase region of the human immunoglobulin heavy chain locus," Nature Genetics 3:88-94 (1993).
Mortensen, et al., "Production of homozygous mutant ES cells with a single targeting construct," Mol. Cell. Biol. 12(5):2391-2395 (1991).
Pachnis, et al., "Transfer of a yeast artificial chromosome carrying human DNA from Saccharomyces cerevisiae into mammalian cells," Proc. Natl. Acad. Sci. U.S.A. 87:5109-5113 (1990).
Pavan, et al., "Modification and transfer into an embryonal carcinoma cell line of a 360-kilobase human-derived yeast artificial chromosome," Mol. Cell. Biol. 10(8):4163-4169 (1990).
Sakano, et al., "Identification and nucleotide sequence of a diversity DNA segment (D) of immunoglobulin heavy chain genes," Nature 290:562-565 (1981).
Shimizu, et al., "Immunoglobulin double-isotype expression by trans-mRNA in a human immunoglobulin transgenic mouse," Proc. Natl. Acad. Sci. U.S.A. 86:8020-8023 (1989).
Shin, et al., "Physical map of the 3' region of the human immunoglobulin heavy chain locus: clustering of autoantibody-related variable segments in one haplotype," EMBO 10:3641-3645 (1991).
Taggart, et al., "Stable antibody-producing murine hybridomas," Science 219:1228-1230 (1983).
Thomas, et al., "Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells," Cell 51: 503-512 (1987).
Traver, et al., "Rapid screening of a human genomic library in yeast artificial chromosomes for single-copy sequences," Proc. Natl. Acad. Sci. U.S.A. 86:5898-5902 (1989).
Tucker, et al., "Mouse IgA heavy chain gene sequence: implications for evolution of immunoglobulin hinge exons," Proc. Natl. Acad. Sci. U.S.A. 78:7684-7688 (1981).
Yamamura, et al., "Cell-type specific and regulated expression of a human .gamma.l heavy-chain immunoglobulin gene in transgenic mice", Proc. Natl. Acad. Sci. U.S.A. 83:2152-2156 (1986).
Yancoupoulos and Alt, Cell 40:271-281 (1985).
Zachau, The human immunoglobulin .kappa. locus and some of its acrobatics, Biol. Chem. 371:1-6 (1990).
Berman, et al., "Content and organization of the human Ig V.sub.H locus: definition of three new V.sub.H families and linkage to the Ig C.sub.H locus," EMBO Journal 7(3):727-738 (1988).
Bruggemann, et al., "A repertoire of monoclonal antibodies with human heavy chains from transgenic mice," Proc. Natl. Acad. Sci USA 86:6709-6713 (1989).
Choi, et al., "RNA splicing generates a variant light chain from an aberrantly rearranged K gene," Nature 286:776-779 (1980).
Jakobovits, et al., "Germ-line transmission and expression of a human-derived yeast artificial chromosome," Nature 362:255-258 (1993).
Joyner, et al., "Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells," Nature 338:153-156 (1989).
Max, et al., "Sequences of five potential recombination sites encoded close to an immunoglobulin .kappa. constant region gene," Proc. Natl. Acad. Sci. USA 76(7):3450-3454 (1979).
Miller, et al., "Structural alterations in J regions of mouse immunoglobulin .lambda. genes are associated with differential gene expression," Nature 295:428-430 (1982).
Orkin, et al., "Mutation in an intervening sequence splice junction in man," Proc. Natl. Acad. Sci. USA 78(8):5041-5045 (1981).
Rajewsky, et al., "Evolutionary and somatic selection of the antibody repertoire in the mouse," Science 238:1088-1094 (1987).
Ramirez-Solis, et al., "Chromosome engineering in mice," Nature 378:720-724 (199
Brenner Daniel G.
Capon Daniel J.
Jakobovits Aya
Klapholz Sue
Kucherlapati Raju
Abgenix, Inc.
Gunnison, Esq Jane T.
Haley, Jr. Esq. James F.
Hauda Karen M.
LandOfFree
Generation of Xenogenetic antibodies does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Generation of Xenogenetic antibodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Generation of Xenogenetic antibodies will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-272448