Generation of an immune response to a pathogen

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S184100

Reexamination Certificate

active

06710035

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to introduction of naked DNA and RNA sequences into a vertebrate to achieve controlled expression of a polypeptide. It is useful in gene therapy, vaccination, and any therapeutic situation in which a polypeptide should be administered to cells in vivo.
Current research in gene therapy has focused on “permanent” cures, in which DNA is integrated into the genome of the patient. Viral vectors are presently the most frequently used means for transforming the patient's cells and introducing DNA into the genome. In an indirect method, viral vectors, carrying new genetic information, are used to infect target cells removed from the body, and these cells are then re-implanted. Direct in vivo gene transfer into postnatal animals has been reported for formulations of DNA encapsulated in liposomes and DNA entrapped in proteoliposomes containing viral envelope receptor proteins (Nicolau et al.,
Proc. Natl. Acad Sci USA
80:1068-1072 (1983); Kaneda et al.,
Science
243:375-378 (1989); Mannino et al.,
Biotechniques
6:682-690 (1988). Positive results have also been described with calcium phosphate co-precipitated DNA (Benvenisty and Reshef Proc.
Natl. Acad Sci USA
83:9551-9555 (1986)).
The clinical application of gene therapy, as well as the utilization of recombinant retrovirus vectors, has been delayed because of safety considerations. Integration of exogenous DNA into the genome of a cell can cause DNA damage and possible genetic changes in the recipient cell that could predispose to malignancy. A method which avoids these potential problems would be of significant benefit in making gene therapy safe and effective.
Vaccination with immunogenic proteins has eliminated or reduced the incidence of many diseases; however there are major difficulties in using proteins associated with other pathogens and disease states as immunogens. Many protein antigens are not intrinsically immunogenic. More often, they are not effective as vaccines because of the manner in which the immune system operates.
The immune system of vertebrates consists of several interacting components. The best characterized and most important parts are the humoral and cellular (cytolytic) branches. Humoral immunity involves antibodies, proteins which are secreted into the body fluids and which directly recognize an antigen. The cellular system, in contrast, relies on special cells which recognize and kill other cells which are producing foreign antigens. This basic functional division reflects two different strategies of immune defense. Humoral immunity is mainly directed at antigens which are exogenous to the animal whereas the cellular system responds to antigens which are actively synthesized within the animal.
Antibody molecules, the effectors of humoral immunity, are secreted by special B lymphoid cells, B cells, in response to antigen. Antibodies can bind to and inactivate antigen directly (neutralizing antibodies) or activate other cells of the immune system to destroy the antigen.
Cellular immune recognition is mediated by a special class of lymphoid cells, the cytotoxic T cells. These cells do not recognize whole antigens but instead they respond to degraded peptide fragments thereof which appear on the surface of the target cell bound to proteins called class I major histocompatibility complex (MHC) molecules. Essentially all nucleated cells have class I molecules. It is believed that proteins produced within the cell are continually degraded to peptides as part of normal cellular metabolism. These fragments are bound to the MHC molecules and are transported to the cell surface. Thus the cellular immune system is constantly monitoring the spectra of proteins produced in all cells in the body and is poised to eliminate any cells producing foreign antigens.
Vaccination is the process of preparing an animal to respond to an antigen. Vaccination is more complex than immune recognition and involves not only B cells and cytotoxic T cells but other types of lymphoid cells as well. During vaccination, cells which recognize the antigen (B cells or cytotoxic T cells) are clonally expanded. In addition, the population of ancillary cells (helper T cells) specific for the antigen also increase. Vaccination also involves specialized antigen presenting cells which can process the antigen and display it in a form which can stimulate one of the two pathways.
Vaccination has changed little since the time of Louis Pasteur. A foreign antigen is introduced into an animal where it activates specific B cells by binding to surface immunoglobulins. It is also taken up by antigen processing cells, wherein it is degraded, and appears in fragments on the surface of these cells bound to Class II MHC molecules. Peptides bound to class II molecules are capable of stimulating the helper class of T cells. Both helper T cells and activated B cells are required to produce active humoral immunization. Cellular immunity is thought to be stimulated by a similar but poorly understood mechanism.
Thus two different and distinct pathways of antigen processing produce exogenous antigens bound to class II MHC molecules where they can stimulate T helper cells, as well as endogenous proteins degraded and bound to class I MHC molecules and recognized by the cytotoxic class of T cells.
There is little or no difference in the distribution of MHC molecules. Essentially all nucleated cells express class I molecules whereas class II MHC proteins are restricted to some few types of lymphoid cells.
Normal vaccination schemes will always produce a humoral immune response. They may also provide cytotoxic immunity. The humoral system protects a vaccinated individual from subsequent challenge from a pathogen and can prevent the spread of an intracellular infection if the pathogen goes through an extracellular phase during its life cycle; however, it can do relatively little to eliminate intracellular pathogens. Cytotoxic immunity complements the humoral system by eliminating the infected cells. Thus effective vaccination should activate both types of immunity.
A cytotoxic T cell response is necessary to remove intracellular pathogens such as viruses as well as malignant cells. It has proven difficult to present an exogenously administered antigen in adequate concentrations in conjunction with Class I molecules to assure an adequate response. This has severely hindered the development of vaccines against tumor-specific antigens (e.g., on breast or colon cancer cells), and against weakly immunogenic viral proteins (e.g., HIV, Herpes, non-A, non-B hepatitis, CMV and EBV).
It would be desirable to provide a cellular immune response alone in immunizing against agents such as viruses for which antibodies have been shown to enhance infectivity. It would also be useful to provide such a response against both chronic and latent viral infections and against malignant cells.
The use of synthetic peptide vaccines does not solve these problems because either the peptides do not readily associate with histocompatibility molecules, have a short serum half-life, are rapidly proteolyzed, or do not specifically localize to antigen-presenting monocytes and macrophages. At best, all exogenously administered antigens must compete with the universe of self-proteins for binding to antigen-presenting macrophages.
Major efforts have been mounted to elicit immune responses to poorly immunogenic viral proteins from the herpes viruses, non-A, non-B hepatitis, HIV, and the like. These pathogens are difficult and hazardous to propagate in vitro. As mentioned above, synthetic peptide vaccines corresponding to viral-encoded proteins have been made, but have severe pitfalls. Attempts have also been made to use vaccinia virus vectors to express proteins from other viruses. However, the results have been disappointing, since (a) recombinant vaccinia viruses may be rapidly eliminated from the circulation in already immune individuals, and (b) the administration of complex viral antigens, may induce a phenomenon known as “antigenic competiti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Generation of an immune response to a pathogen does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Generation of an immune response to a pathogen, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Generation of an immune response to a pathogen will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200836

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.