Data processing: measuring – calibrating – or testing – Testing system – Of circuit
Reexamination Certificate
2000-08-09
2004-02-24
Hoff, Marc S. (Department: 2857)
Data processing: measuring, calibrating, or testing
Testing system
Of circuit
C702S013000, C702S123000
Reexamination Certificate
active
06697754
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed generally to signal measurement systems and, more particularly, to the generation and execution of an instrument control macro file for controlling a signal measurement system.
2. Related Art
Conventional signal measurement systems such as digital oscilloscopes sample, record and display time-varying analog signals. Samples of an input signal are taken and quantified, and the resultant digital representations are stored in a waveform memory under the control of a sampling clock. The acquired data may be subsequently retrieved as locations in memory to provide digital data that can be converted to a time-varying output signal for a waveform display. The sampling clock may be operated at one of several selectable rates depending on the frequency content of the input signal. The portion of the analog input signal that is sampled and stored is determined by appropriate triggering circuitry to enable the operator to display the desired portion of the waveform.
There are many types of display elements that can be presented on a display device of signal measurement systems in general and test and measurement instruments in particular. For example, in addition to the waveforms representing the signals received at the channel inputs, waveforms referred to as function waveforms may also be displayed. Function waveforms are waveforms generated by processing one or more signal waveforms. Such processing may include, for example, performing arithmetic manipulations on a signal waveform or combining multiple input signal waveforms in some predetermined manner. The resulting function waveforms are stored in a display memory for subsequent retrieval and display. In addition, waveforms referred to as memory waveforms may also be displayed. Memory waveforms are waveforms that have been captured previously and stored in a memory device of the signal measurement system. In addition to the above waveforms, other display elements such as marker indicators, trigger indicators, etc., are typically displayed.
Modern signal measurement systems offer a significant number of instrument control operations that can be invoked by an operator to acquire and measure the displayed waveforms. Because instrument front panels are relatively small, these instruments cannot provide a dedicated front panel control for each available operation. To provide the operator with access to the available operations, conventional instruments generally include a hierarchical arrangement of multifunction softkeys. The instrument manufacturer assigns a limited number of common operations to dedicated front panel keys while assigning each of the remaining operations to a softkey in the softkey hierarchy.
Invocation of a desired operation that is not mapped to a dedicated front panel key requires the operator to navigate through one or more hierarchical softkey layers to reach the appropriate hierarchical layer that includes the desired operation. The operator then must activate the actual softkey associated with the desired operation. Unfortunately, this conventional approach fails to provide the operator with a simple and convenient technique to invoke frequently performed operations without numerous operator actions. For example, most digital oscilloscopes have a dedicated key for invoking run/stop functionality due to its widespread use across many different measurement scenarios. In contrast, there are no known oscilloscopes that have a dedicated front panel key to invoke, for example, the waveform averaging function. Also, the most commonly accessed functions vary not only from operator to operator but also for a given operator across different measurement scenarios. The permanent assignment of the front panel keys to a particular operation without regard to variability in individual operators or the tasks performed by a given operator often results in the operator not having immediate and direct access to desired operations. Not only are such arrangements difficult to understand and operate, considerable time is consumed performing the requisite steps to invoke a desired operation.
Similar drawbacks exist in signal measurement systems that provide the operator with a graphical user interface (GUI) through which instrument control operations can be invoked. In these systems, numerous point and click operations must be performed to invoke a desired operation. For example, GUI-based instruments typically require the operator to select a menu item from the main menu bar to cause the display of a relevant dialog box. Oftentimes, the operator must make graphical selections in this dialog box to cause an additional dialog box to be displayed. Having navigated through one or more dialog boxes, the operator must then graphically manipulate the information in the dialog box to invoke the desired operation. Finally, the operator must close the dialog box(es). Like the softkey approach, this requires a significant number of operator actions to be performed, consuming considerable operator time.
It is not uncommon for the operator to control the instrument to perform complex acquisition or measurement operations that require the sequential invocation of many individual instrument control operations. With the invocation of each such operation requiring the noted series of operator actions, it is often time consuming and difficult to perform the larger, more complex task using conventional instruments.
What is needed, therefore, is a system and method that enables the operator to quickly and easily invoke desired instrument control operations in a signal measurement system.
SUMMARY OF THE INVENTION
The present invention is directed to an apparatus and method for providing an end-user; that is, an operator, with the ability to invoke a set of one or more operator-specified instrument control operations with one, single-action switch preferably located on a signal measurement system front panel. Providing the operator with the capability to assign temporarily one or more instrument control operations to a single front panel switch or key to which the operator has easy and direct access enables the operator to customize the user interface to optimally support the operator's current needs. As the operator's needs and use of the signal measurement system change, so too can the instrument control operations that are mapped to the dedicated front panel key. Furthermore, any number and sequence of arbitrary instrument control commands may be included in the macro file, thereby providing significant flexibility in the development of macro files that can support the needs of the operator.
A number of aspects of the invention are summarized below, along with different embodiments that may be implemented for each of the summarized aspects. It should be understood that the embodiments are not necessarily inclusive or exclusive of each other and may be combined in any manner that is non-conflicting and otherwise possible. It should also be understood that these summarized aspects of the invention are exemplary only and are considered to be non-limiting.
In one aspect of the invention, a macro management system is disclosed. The macro management system provides an operator of a signal measurement system with the capability to invoke execution of an operator-defined executable macro file comprising one or more instrument control commands through a single operator action. Each instrument control command represents one or more instrument control operations. The single operator action is preferably an activation of a macro control key on a front panel of the signal measurement system, or graphical selection of a single display element presented on a graphical user interface of the signal measurement system. In one embodiment, the one or more instrument control commands are descriptive, high level commands of an instrument control language such as GPIB.
In one embodiment, the macro management system includes a macro file generation unit configured to provide th
Agilent Technologie,s Inc.
Hoff Marc S.
Raymond Edward
LandOfFree
Generation and execution of instrument control macro files... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Generation and execution of instrument control macro files..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Generation and execution of instrument control macro files... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3335600