Chemistry: electrical and wave energy – Apparatus – Electrolytic
Reexamination Certificate
1998-01-05
2003-06-10
Phasge, Arun S. (Department: 1741)
Chemistry: electrical and wave energy
Apparatus
Electrolytic
C205S626000, C205S628000, C205S637000, C205S616000, C204S265000, C204S263000, C204S266000
Reexamination Certificate
active
06576096
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
This invention relates to the production and delivery of ozone in highly concentrated forms, both in high weight percent gas and high levels of ozone dissolved in water. More specifically, the invention relates to an electrochemical system capable of efficiently generating even small amounts of ozone.
Background of the Related Art
Ozone has long been recognized as a useful chemical commodity valued particularly for its outstanding oxidative activity. Because of this activity, it finds wide application in disinfection processes. In fact, it kills bacteria more rapidly than chlorine, it decomposes organic molecules, and removes coloration in aqueous systems. Ozonation removes cyanides, phenols, iron, manganese, and detergents. It controls slime formation in aqueous systems, yet maintains a high oxygen content in the system. Unlike chlorination, which may leave undesirable chlorinated organic residues in organic containing systems, ozonation leaves fewer potentially harmful residues. Ozone has also been shown to be useful in both gas and aqueous phase oxidation reactions which may be carried out by advanced oxidation processes (AOPs) in which the formation of OH. radicals is enhanced by exposure to ultraviolet light. Certain AOPs may even involve a catalyst surface, such as a porous titanium dioxide photocatalyst, that further enhances the oxidation reaction. There is even evidence that ozone will destroy viruses. Consequently, it is used for sterilization in the brewing industry and for odor control in sewage treatment and manufacturing. Ozone may also be employed as a raw material in the manufacture of certain organic compounds, e.g., oleic acid and peroxyacetic acid.
Thus, ozone has widespread application in many diverse activities, and its use would undoubtedly expand if its cost of production could be reduced. For many reasons, ozone is generally manufactured on the site where it is used. However, the cost of generating equipment, and poor energy efficiency of production has deterred its use in many applications and in many locations.
On a commercial basis, ozone is currently produced by the silent electric discharge process, otherwise known as corona discharge, wherein air or oxygen is passed through an intense, high frequency alternating current electric field. The corona discharge process forms ozone through the following reaction:
3/2O
2
═O
3
; &Dgr;H
o
298
=34.1 kcal
Yields in the corona discharge process generally are in the vicinity of 2% ozone, i.e., the exit gas may be about 2% O
3
by weight. Such O
3
concentrations, while quite poor in an absolute sense, are still sufficiently high to furnish usable quantities of O
3
for the indicated commercial purposes. Another disadvantage of the corona process is the production of harmful NO
x
otherwise known as nitrogen oxides. Other than the aforementioned electric discharge process, there is no other commercially exploited process for producing large quantities of O
3
.
However, O
3
may also be produced through an electrolytic process by impressing an electric current (normally D.C.) across electrodes immersed in an electrolyte, i.e., electrically conducting fluid. The electrolyte includes water, which, in the process dissociates into its respective elemental species, O
2
and H
2
. Under the proper conditions, the oxygen is also evolved as the O
3
species. The evolution of O
3
may be represented as:
3H
2
O═O
3
+3H
2
; &Dgr;H
o
298
=207.5 kcal
It will be noted that the &Dgr;H
o
in the electrolytic process is many times greater than that for the electric discharge process. Thus, the electrolytic process appears to be at about a six-fold disadvantage.
More specifically, to compete on an energy cost basis with the electric discharge method, an electrolytic process must yield at least a six-fold increase in ozone. Heretofore, the necessary high yields have not been realized in any foreseeable practical electrolytic system.
The evolution of O
3
by electrolysis of various electrolytes has been known for well over 100 years. High yields up to 35% current efficiency have been noted in the literature. Current efficiency is a measure of ozone production relative to oxygen production for given inputs of electrical current, i.e., 35% current efficiency means that under the conditions stated, the O
2
/O
3
gases evolved at the anode are comprised of 35% O
3
by weight. However, such yields could only be achieved utilizing very low electrolyte temperatures, e.g., in the range from about −30° C. to about −65° C. Maintaining the necessary low temperatures, obviously requires costly refrigeration equipment as well as the attendant additional energy cost of operation.
Ozone, O
3
, is present in large quantities in the upper atmosphere in the earth to protect the earth from the suns harmful ultraviolet rays. In addition, ozone has been used in various chemical processes and is known to be a strong oxidant, having an oxidation potential of 2.07 volts. This potential makes it the fourth strongest oxidizing chemical known.
Because ozone has such a strong oxidation potential, it has a very short half-life. For example, ozone which has been solubilized in waste water may decompose in a matter of 20 minutes. Ozone can decompose into secondary oxidants such as highly reactive hydroxyl (OH.) and peroxyl (HO
2
.) radicals. These radicals are among the most reactive oxidizing species known. They undergo fast, non-selective, free radical reactions with dissolved compounds. Hydroxyl radicals have an oxidation potential of 2.8 volts (V), which is higher than most chemical oxidizing species including O
3
. Most of the OH. radicals are produced in chain reactions where OH. itself or HO
2
. act as initiators.
Hydroxyl radicals act on organic contaminants either by hydrogen abstraction or by hydrogen addition to a double bond, the resulting radicals disproportionate or combine with each other forming many types of intermediates which react further to produce peroxides, aldehydes and hydrogen peroxide.
Electrochemical cells in which a chemical reaction is forced by added electrical energy are called electrolytic cells. Central to the operation of any cell is the occurrence of oxidation and reduction reactions which produce or consume electrons. These reactions take place at electrode/solution interfaces, where the electrodes must be good electronic conductors. In operation, a cell is connected to an external load or to an external voltage source, and electric charge is transferred by electrons between the anode and the cathode through the external circuit. To complete the electric circuit through the cell, an additional mechanism must exist for internal charge transfer. This is provided by one or more electrolytes, which support charge transfer by ionic conduction. Electrolytes must be poor electronic conductors to prevent internal short circuiting of the cell.
The simplest electrochemical cell consists of at least two electrodes and one or more electrolytes. The electrode at which the electron producing oxidation reaction occurs is the anode. The electrode at which an electron consuming reduction reaction occurs is called the cathode. The direction of the electron flow in the external circuit is always from anode to cathode.
Recent ozone research has been focused primarily on methods of using ozone, as discussed above, or methods of increasing the efficiency of ozone generation. For example, research in the electrochemical production of ozone has resulted in improved catalysts, membrane and electrode assemblies, flowfields and bipolar plates and the like. These efforts have been instrumental in making the electrochemical production of ozone a reliable and economical technology that is ready to be taken out of the laboratory and placed into commercial applications.
However, because ozone has a very short life in the gaseous form, and an even shorter life when dissolved in water, it is preferably generated in close proximity to where the ozone will be consumed.
Andrews Craig C.
Murphy Oliver J.
Lynntech International Ltd.
Phasge Arun S,.
Streets Jeffrey L.
Streets & Steele
LandOfFree
Generation and delivery device for ozone gas and ozone... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Generation and delivery device for ozone gas and ozone..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Generation and delivery device for ozone gas and ozone... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3120008