Generating and implementing a communication protocol and...

Electrical computers and digital processing systems: multicomput – Computer-to-computer protocol implementing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06760772

ABSTRACT:

BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention relates to a digital signal protocol and process for communicating signals between a host communications device and a client audio/visual presentation device at high data rates. More specifically, the present invention relates to a technique for transferring multimedia and other types of digital signals from a wireless device to a micro-display unit or other presentation device using a low power high data rate transfer mechanism.
II. Related Art
Computers, electronic game related products, and various video technologies (for example DVD's and High Definition VCRs) have advanced significantly over the last few years to provide for presentation of increasingly higher resolution still, video, video-on-demand, and graphics images, even when including some types of text, to end users of such equipment. These advances in turn mandated the use of higher resolution electronic viewing devices such as high definition video monitors, HDTV monitors, or specialized image projection elements. Combining such visual images with high-definition or -quality audio data, such as when using CD type sound reproduction, DVDs, and other devices also having associated audio signal outputs, is used to create a more realistic, content rich, or true multimedia experience for an end user. In addition, highly mobile, high quality sound systems and music transport mechanisms, such as MP3 players, have been developed for audio only presentations to end users.
In a typical video presentation scenario, video data is typically transferred using current techniques at a rate that could be best termed as slow or medium, being on the order of one to tens of kilobits per second. This data is then either buffered or stored in transient or longer term memory devices, for delayed (later) play out on a desired viewing device. For example, images may be transferred “across” or using the Internet using a program resident on a computer having a modem or internet connection device, to receive or transmit data useful in digitally representing an image. A similar transfer can take place using wireless devices such as portable computers equipped with wireless modems, or wireless Personal Data Assistants (PDAs), or wireless telephones.
Once received, the data is stored locally in memory elements, circuits, or devices, such as RAM or flash memory, including external storage devices, for playback. Depending on the amount of data and the image resolution, the playback might begin relatively quickly, or be presented with longer term delay. That is, in some instances, image presentation allows for a certain degree of real time playback for very small or low resolution images not requiring much data, or using some type of buffering, so that after a small delay, some material is presented while more material is being transferred. Provided there are no interruptions in the transfer link, once the presentation begins the transfer is reasonably transparent to the end user of the viewing device.
The data used to create either still images or motion video are often compressed using one of several well known techniques such as those specified by the Joint Photographic Experts Group (JPEG), the Motion Picture Experts Group (MPEG), and other well known standards organizations or companies for in the media, computer, and communications industries to speed the transfer of data over a communication link. This allows transferring images or data faster by using a smaller number of bits to transfer a given amount of information.
Once the data is transferred to a “local” device such as a computer or other device, the resulting information is un-compressed (or played using special decoding players) and prepared for appropriate presentation based on the corresponding available presentation resolution and control elements. For example, a typical computer video resolution in terms of a screen resolution of X by Y pixels typically ranges from as low as 480×640, through 600×800 to 1024×1024, although a variety of other resolutions are generally possible, either as desired or needed.
Image presentation is also affected by the image content and the ability of given video controllers to manipulate the image in terms of certain predefined color levels or color depth (bits per pixel used to generate colors) and intensities, and any additional overhead bits being employed. For example, a typical computer presentation would anticipate anywhere from around 8 to 32, or more, bits per pixel to represent various colors (shades and hues), although other values are encountered.
From the above values, one can see that a given screen image is going to require the transfer of anywhere from 2.45 Megabits (Mb) to around 33.55 Mb of data over the range from the lowest to highest typical resolutions and depth, respectively. When viewing video or motion type images at a rate of 30 frames per second, the amount of data required is around 73.7 to 1,006 Megabits of data per second (Mbps), or around 9.21 to 125.75 Megabytes per second (MBps). In addition, one may desire to present audio data in conjunction with images, such as for a multimedia presentation, or as a separate high resolution audio presentation, such as CD quality music. Additional signals dealing with interactive commands, controls, or signals may also be employed. Each of these options adding even more data to be transferred. In any case, when one desires to transfer high quality or high resolution image data and high quality audio information or data signals to an end user to create a content rich experience, a high data transfer rate link is required between presentation elements and the source or host device that is configured to provide such types of data.
Data rates of around 115 Kilobytes (KBps) or 920 Kilobits per second (Kbps) can be routinely handled by modern serial interfaces. Other interfaces such as USB serial interfaces, can accommodate data transfers at rates as high as 12 MBps, and specialized high speed transfers such as those configured using the Institute of Electrical and Electronics Engineers (IEEE) 1394 standard, can occur at rates on the order of 50 to 100 MBps. Unfortunately, these rates fall short of the desired high data rates discussed above which are contemplated for use with future wireless data devices and services for providing high resolution, content rich, output signals for driving portable video displays or audio devices. In addition, these interfaces require the use of a significant amount of host or system and client software to operate. Their software protocol stacks also create an undesirably large amount of overhead, especially where mobile wireless devices or telephone applications are contemplated. Furthermore, some of these interfaces utilize bulky cables which are too heavy and unsatisfactory for highly aesthetic oriented mobile applications, complex connectors which add cost, or simply consume too much power.
There are other known interfaces such as the Analog Video Graphics Array (VGA), Digital Video Interactive (DVI) or Gigabit Video Interface (GVIF) interfaces. The first two of these are parallel type interfaces which process data at higher transfer rates, but also employ heavy cables and consume large amounts of power, on the order of several watts. Neither of these characteristics are amenable to use with portable consumer electronic devices. Even the third interface consumes too much power and uses expensive or bulky connectors.
For some of the above interfaces, and other very high rate data systems/protocols or transfer mechanisms associated with data transfers for fixed installation computer equipment, there is another major drawback. To accommodate the desired data transfer rates also requires substantial amounts of power and/or operation at high current levels. This greatly reduces the usefulness of such techniques for highly mobile consumer oriented products.
Generally, to accommodate such data transfer rates using alternatives such as say optical fiber type co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Generating and implementing a communication protocol and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Generating and implementing a communication protocol and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Generating and implementing a communication protocol and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3217501

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.