Computer graphics processing and selective visual display system – Display peripheral interface input device – Including keyboard
Reexamination Certificate
2000-10-26
2003-03-04
Mengistu, Amare (Department: 2673)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Including keyboard
C709S245000
Reexamination Certificate
active
06529187
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is addressed to a system for an improved access to the Internet by allowing an easily implemented entry of alphabetic and other characters using telephone-style keypads of an Internet enabled device.
2. Discussion of Background
The availability of alphabetic characters using digital keypads such as shown in
FIG. 3
, is universally solved by pressing a corresponding numeric digit key successive times until the correct letter is selected. The pressing of another digital key begins the selection process for the alphabetic character corresponding with that key. The universal telephone display has twelve keys contains the numbers 0-9 plus the “#” and “*”. Each of the numbers 2-6 and 8 are associated with three separate letters of the alphabet while the numbers 7 and 9 are associated with four separate letters to provide a total 26 characters represented by the eight numbers 2-9. With such a system, in order to enter text, as explained above, it is necessary to press a digital key once for the first letter represented by the digital key and twice for the second letter represented by the digital key and three times for the third letter. As an example, to enter the text “DOG” the following key presses are required:
The availability of alphabetic characters using digital keypads is universally solved by pressing a corresponding numeric digit key successive times until the correct letter is selected. The pressing of another digit key begins the selection process for the alphabetic character corresponding with that key. The universal telephone display has twelve keys contains the number 0-9 plus the “#” and “*”. Each of the numbers 2-9 associated with three or four separate letters of the alphabet to provide a total 24 characters represented by the eight numbers 2-9. The letters Q and Z are not represented on all device keypads. With such a system, in order to enter text,as explained above, it is necessary to press a digit key once for the first letter represented by the digit key and twice for the second letter represented by the digit key and three times for the third letter. As an example, to enter the text “DOG” the following key presses are required:
Alphabetic
Key
Display
3
D
6
DM
6
DN
6
DO
4
DOG
Aside from the difficulty of entering this particular sequence, the problem increases even further when alpha characters in sequence are represented by the same digit key. When this occurs, it is necessary to either pause for a few seconds until the display advances or to press a navigation key to advance the cursor. This is illustrated by the following table of keys which need to be pressed to enter the text “CAT”.
Alphabetic
Key
Display
2
A
2
B
2
C
Pause
C
2
CA
8
CAT
Entry of numeric keys from this particular display is accomplished by either pressing the key additional times until the numeric character is displayed or switching the entry mode to numeric in order to enter the digits correctly. Additionally, special characters are accessible depending on the different cell phone manufactures and typically require the switching of keypad entry modes and multiple key presses.
In order to address some of the problems with Internet access from mobile phones, digital phones are being constructed which are “Internet enabled” by the addition of micro-browser technology which is embedded into the device which enables the connection to a specifically configured server typically located at the wireless carrier premises. The emerging Wireless Application Protocol (WAP) is becoming the standard for these type of implementations. These kinds of browsers normally have two modes of Internet navigation. The first mode is a default menu controlled by the wireless carrier which allows navigation and selection by pressing key pad digits corresponding to the menu items. In a second mode of selection known as a “go to Internet”, a selection is made which allows the user to enter a Internet standard Uniform Record Locator (URL). In this Internet mode of operation, entry of Internet destinations is substantially identical to a personal computer browser. However, no matter how compatible it is to a personal computer browser, there is still the problem with time consuming and difficult entry of URLs.
For example, a typical URL must be addressed according to the formatted pages appropriate for display through a WAP browser as for example:
HTTPS://WWW.PHONESERVER.COM:443/index.hdml
The sequence which would be necessary to enter this URL from a telephone keypad would require between 75 and 100 key presses along with several pauses and key pad entry mode changes.
One aid in the execution of the above URL is an auto-completion of the URL addresses. This approach takes advantage of the fact that the majority of URL's begin with “WWW” and end with “.com”. Therefore, this auto-completion feature allows for entry of only the word “phoneserver” with completion of the rest of the URL by insertion of the “WWW” and the “.com”
Once the auto-completed address is used, the phone user would typically be routed to the standard web server for a particular organization. This web server is set up to communicate with PC based browsers and will not be able to support the customized navigation required for an effective user experience on their based browser.
Even with all of these changes with respect to addressing the complexity of entering Internet URLs, the largest single obstacle to effect a navigation of the Internet from mobile phones is a difficulty of typing out words using a wireless phone key pad. This is even more difficult in changing light conditions or while in motion which has become a particular problem even for regular telephone to telephone dialing on mobile phones. That is, the problems of safe driving have come to the forefront with respect to not only conversing over the telephones but the actual dialing of a phone number.
Accordingly, there is a need for ease of connection between a mobile phone Internet based system and the Internet which addresses the problem of entering alphabetic characters in a telephone keypad.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide mobile phone users with convenient and easy access to desired addresses on the Internet by using easily recognizable and accessible sequences of keys. It is a further object of the present invention to provide ease of access through the utilization of sequences of letters which correspond to the first letter represented by a keypad key.
These objects are attained by a system which allows the selection of sequences of letters which are very easily entered from a keypad in order to navigate to a particular Internet destination wherein this simple sequence of numbers is recognized by a registered domain name and is affiliated with a specified host that can perform rerouting of traffic from a Web server to provide instruction as to what Internet protocol (IP) address to use when routing traffic for servers in this domain.
The system features the development of software which recognizes a request originating from a phone base browser and uses standard Internet protocols to redirect the user session to the appropriate server page for the content. This approach can be extended by having this software automatically detect the source network (wireless carrier) and the device type and provide automatic routing to different application or different servers based on the network, device or security type required for the service (e.g. HTTP: vs. HTTPS:).
It is a further implementation of the present invention to add features to the web server routing software previously described so that individual mapping commands for a variety of Internet destinations can be managed by a consumer.
The Web server rerouting application of the present invention can be configured by the user on the phone or by the user from a personal computer web browser in order to provide a much fuller integration of function including entry of complex key presses to Internet URL mapp
Crowell & Moring LLP
Dickelman Mark
Mengistu Amare
Patel Nitin
LandOfFree
Generalized system for internet and services navigation from... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Generalized system for internet and services navigation from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Generalized system for internet and services navigation from... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3002003