Telephonic communications – Plural exchange network or interconnection – Interexchange signalling
Reexamination Certificate
1998-10-06
2003-03-25
Matar, Ahmad F. (Department: 2642)
Telephonic communications
Plural exchange network or interconnection
Interexchange signalling
C379S229000, C379S245000, C379S246000
Reexamination Certificate
active
06539090
ABSTRACT:
TECHNICAL FIELD
This invention relates to arrangements for routing telephone calls and more specifically, for such arrangements making use of a centralized database.
PROBLEM
Telephone call routing has traditionally been accomplished through the use of small telephone numbers that specify a destination. In the North American numbering plan, a three digit area code specifies a region, a second three-digit code specifies a switching system within that region, and the last four digits specify a subscriber connected to that switch. The process of routing a call is thereby accomplished by routing the call to a toll switch within the specified region (and in some cases, using six-digit translation, to route the call to one of several such toll switches). Routing the call then, from that toll switch directly or indirectly to the switching system specified by the office code, and then, in that switching system, based on local translations, routing the call to the destination customer.
A number of problems with this simple arrangement have become apparent in the last several decades. For example, as “800” calling became popular, it was necessary that calls to an “800” number could be routed any place in the country. The problem was solved by implementing a database to translate from an “800” number to a conventional POTS, (plain old telephone service) number, and routing to that conventional telephone number. In a similar way, software defined networks were implemented to allow customers within a business to use an internal numbering plan to access other telephones of a business via the public switched telephone number by having a database to translate between internal telephone numbers, and POTS numbers.
The introduction of competition into the telecommunications business has further created problems. One of the desirable features that is being implemented with the introduction of competition, is local number portability wherein a customer may switch to being served by another service provider without changing the customer's telephone number. Thus, a range of telephone numbers which formerly were associated with a single switch, may now be served by two or more switches. Proposed solutions to this problem have generally involved the use of a database to identify the switch serving a particular telephone number, and arranging to route the call to that switch, or by initially routing the call to the switch of the main carrier, and then re-routing the call to the switch of the carrier actually serving the terminating customer.
In recent years, the Internet network has grown. Using the facilities of the Internet network, an Internet name (e.g., e-mail address), or other handle is translated in a database into an Internet protocol address for transmitting Internet datagrams to the destination specified by the name.
SOLUTION
Applicants have recognized that there are major shortcomings to the status quo for routing calls to a destination customer. First, translations are performed in all intermediate switches as a call is advanced from source to destination. The object of these translations is to determine the best route for connecting the call to the destination switch. Second, the process of providing telephone service to a customer that moves is costly, time consuming, and awkward. If the customer moves from one switch to another, the customer's number generally is changed, which is undesirable. Even if the customer stays within the same switch, and/or retains the same telephone number, the administration of the change, and the change of translation data for that customer in a specific switch out of the hundreds of switches served by a service order bureau is time consuming; all the customer's special service needs must be re-specified for the new switch and customer port. Whereas plans are being made which can accommodate number portability, within a selectively local area, the problems of allowing complete number portability throughout the nation are so formidable that practically speaking, nationwide number portability cannot be implemented using the present routing and translation arrangements. Third, special number blocks must be reserved for customers who have special terminating service, accessed by special access codes, such as “800 numbers, and “900” numbers. The need for additional “800” numbers, for example, has already required the setting aside of two additional area codes for this purpose. Sometimes this has been helpful, since for example, customers know when dialing an “800” number they will not be charged for the call; however, as new, more specialized services are introduced, it will be awkward to require the setting aside of a new NPA code for each of these services. Fourth, the use of 800 and 900 numbers requires a special database dedicated to the function of translating to POTS numbers, a database which must be maintained along with the supporting local switch databases. Fifth, the current arrangement requires customers to be assigned one or more POTS numbers corresponding to 800, etc., numbers, thus using up these POTS numbers. Sixth, there is no facility for assigning a handle such as an Internet name to a customer being routed over the public switched telephone network, (PSTN). Seventh, special translations are required for routing calls to special announcements, mail boxes, call prompt menus, and services such as a “meet me” conference switch.
Applicants have analyzed these problems and have come up with a generalized solution which represents a significant advance over the prior art. In accordance with their invention, a centralized database is consulted for routing calls; this centralized database makes a translation between an access identifier such as the called number, name or other handle, (e.g,. e-mail address), and a destination switch. In accordance with Applicants' preferred embodiment, the translation further provides an identification of the terminating port or port group by means of which the destination switch can access the destination terminal. A port as used herein is an outlet from a switch that carries telecommunication signals to or from a user. It can be, for example, a line port connected to a customer line, a trunk port connected to a PBX, (Private Branch Exchange) or another switch, a port on a subscriber loop carrier, remote concentrator or remote switching unit connected to the terminating switch
1
, a local area network port, or a radio link for accessing a wireless customer. Advantageously, using such an arrangement, a user can be connected to any switch regardless of the user's access identifier.
In accordance with the preferred embodiment, calls to a number can be connected to a customer at any port of any switch, including a port for serving a wireless device. Advantageously, this permits customers who move to specify the new street address at which their telecommunications terminal is now connected; using a database to translate between any street address and the corresponding port and switch, by specifying a new street address to the database, the customer effectively specifies the switch and port to which calls for their telephone should be routed. The term “street address” as used herein, also includes an internal apartment, room, or office number, for the case of a building occupied by multiple parties.
In accordance with one feature of Applicants' invention, the full terminating translation is stored in the centralized database. Advantageously, this arrangement bypasses the need for a special translation from an 800 or 900 number to a POTS number, followed by routing a call using the POTS number. Instead the 800 number is translated to the identity of the terminating switch, and terminating port or port group. The translation can still provide the flexible arrangements for special access codes such as 800 or 900 number type calls which allow for variations in the selection of a terminating port, or port groups, according to the time of day, day of week, location, and/or identity of the calling pa
Frey Alan Eugene
Tripp Susan Jean
Bui Bing
Lucent Technologies - Inc.
Matar Ahmad F.
Ulrich Werner
LandOfFree
Generalized arrangement for routing telecommunications calls does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Generalized arrangement for routing telecommunications calls, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Generalized arrangement for routing telecommunications calls will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3061895