General signaling protocol for chemical receptors in...

Chemistry: molecular biology and microbiology – Apparatus – Including measuring or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S287200

Reexamination Certificate

active

06589779

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and device for the detection of analytes in a fluid. More particularly, the invention relates to the development of a sensor array system capable of discriminating mixtures of analytes, toxins, and/or bacteria in medical, food/beverage, and environmental solutions.
2. Brief Description of the Related Art
The development of smart sensors capable of discriminating different analytes, toxins, and bacteria has become increasingly important for clinical, environmental, health and safety, remote sensing, military, food/beverage and chemical processing applications. Although many sensors capable of high sensitivity and high selectivity detection have been fashioned for single analyte detection, only in a few selected cases have array sensors been prepared which display solution phase multi-analyte detection capabilities. The advantages of such array systems are their utility for the analysis of multiple analytes and their ability to be “trained” to respond to new stimuli. Such on site adaptive analysis capabilities afforded by the array structures make their utilization promising for a variety of future applications. Array based sensors displaying the capacity to sense and identify complex vapors have been demonstrated recently using a number of distinct transduction schemes. For example, functional sensors based on Surface Acoustic Wave (SAW), tin oxide (SnO
2
) sensors, conductive organic polymers, and carbon black/polymer composites have been fashioned. The use of tin oxide sensors, for example, is described in U.S. Pat. No. 5,654,497 to Hoffheins et al. These sensors display the capacity to identify and discriminate between a variety of organic vapors by virtue of small site-to-site differences in response characteristics. Pattern recognition of the overall fingerprint response for the array serves as the basis for an olfaction-like detection of the vapor phase analyte species. Indeed, several commercial “electronic noses” have been developed recently. Most of the well established sensing elements are based on SnO
2
arrays which have been derivatized so as to yield chemically distinct response properties. Arrays based on SAW crystals yield extremely sensitive responses to vapor, however, engineering challenges have prevented the creation of large SAW arrays having multiple sensor sites. To our knowledge, the largest SAW device reported to date possesses only 12 sensor elements. Additionally, limited chemical diversity and the lack of understanding of the molecular features of such systems makes their expansion into more complex analysis difficult.
Other structures have been developed that are capable of identifying and discriminating volatile organic molecules. One structure involves a series of conductive polymer layers deposited onto metal contacting layers. When these sensors are exposed to volatile reagents, some of the volatile reagents adsorb into the polymer layers, leading to small changes in the electrical resistance of these layers. It is the small differences in the behavior of the various sites that allows for a discrimination, identification, and quantification of the vapors. The detection process takes only a few seconds, and sensitivities of part-per-billion can be achieved with this relatively simple approach. This “electronic nose” system is described in U.S. Pat. No. 5,698,089 to Lewis et al. which is incorporated herein by reference as if set forth herein.
Although the above described electronic nose provides an impressive capability for monitoring volatile reagents, the system possesses a number of undesirable characteristics that warrant the development of alternative sensor array systems. For example, the electronic nose can be used only for the identification of volatile reagents. For many environmental, military, medical, and commercial applications, the identification and quantification of analytes present in liquid or solid-phase samples is necessary. Moreover, the electronic nose systems are expensive (e.g., the Aromascan system costs about $50,000/unit) and bulky (≧1 ft
3
). Furthermore, the functional elements for the currently available electronic nose are composed of conductive polymer systems which possess little chemical selectivity for many of the analytes which are of interest to the military and civilian communities.
One of the most commonly employed sensing techniques has exploited colloidal polymer microspheres for latex agglutination tests (LATs) in clinical analysis. Commercially available LATs for more than 60 analytes are used routinely for the detection of infectious-diseases, illegal drugs, and early pregnancy tests. The vast majority of these types of sensors operate on the principle of agglutination of latex particles (polymer microspheres) which occurs when the antibody-derivatized microspheres become effectively “cross-linked” by a foreign antigen resulting in the attachment to, or the inability to pass through a filter. The dye-doped microspheres are then detected calorimetrically upon removal of the antigen carrying solution. However, the LATs lack the ability to be utilized for multiple, real time analyte detection schemes as the nature of the response intrinsically depends on a cooperative effect of the entire collection of microspheres.
Similar to the electronic nose, array sensors that have shown great analytical promise are those based on the “DNA on a chip” technology. These devices possess a high density of DNA hybridization sites that are affixed in a two-dimensional pattern on a planar substrate. To generate nucleotide sequence information, a pattern is created from unknown DNA fragments binding to various hybridization sites. Both radiochemical and optical methods have provided excellent detection limits for analysis of limited quantities of DNA. (Stimpson, D. I.; Hoijer, J. V.; Hsieh, W.; Jou, C.; Gardon, J.; Theriault, T.; Gamble, R.; Baldeschwieler, J. D. Proc. Natl. Acad. Sci. USA 1995, 92, 6379). Although quite promising for the detection of DNA fragments, these arrays are generally not designed for non-DNA molecules, and accordingly show very little sensitivity to smaller organic molecules. Many of the target molecules of interest to civilian and military communities, however, do not possess DNA components. Thus, the need for a flexible, non-DNA based sensor is still desired. Moreover, while a number of prototype DNA chips containing up to a few thousand different nucleic acid probes have been described, the existing technologies tend to be difficult to expand to a practical size. As a result, DNA chips may be prohibitively expensive for practical uses.
Systems for analyzing fluid samples using an array formed of heterogeneous, semi-selective thin films which function as sensing receptor units are described in U.S. Pat. Nos. 6,023,540; 5,814,524; 5,700,897; 5,512,490; 5,480,723; 5,252,494; 5,250,264; 5,244,813; 5,244,636; and 5,143,853 which are incorporated herein by reference as if set forth herein. These systems appears to describe the use of covalently attached polymeric “cones” which are grown via photopolymerization onto the distal face of fiber optic bundles. These sensor probes appear to be designed with the goal of obtaining unique, continuous, and reproducible responses from small localized regions of dye-doped polymer. The polymer appears to serve as a solid support for indicator molecules that provide information about test solutions through changes in optical properties. These polymer supported sensors have been used for the detection of analytes such as pH, metals, and specific biological entities. Methods for manufacturing large numbers of reproducible sensors, however, has yet to be developed. Moreover, no methods for acquisitions of data streams in a simultaneous manner are commercially available with this system. Optical alignment issues may also be problematic for these systems.
A method of rapid sample analysis for use in the diagnostic microbiology field is also desirable. The techniques now use

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

General signaling protocol for chemical receptors in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with General signaling protocol for chemical receptors in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and General signaling protocol for chemical receptors in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3038556

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.