Gene encoding a protein involved in the signal transduction casc

Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4353201, 435419, 435468, 536 236, 800279, 800305, 800306, 800307, 800309, 800310, 800312, 800313, 800315, 800317, 8003172, 8003173, 8003174, 800318, 800320, 8003202, 8003203, A01H 500, C12N 514, C12N 1529, C12N 1582

Patent

active

060910046

ABSTRACT:
The invention concerns the location and characterization of a gene (designated NIM1) that is a key component of the SAR pathway and that in connection with chemical and biological inducers enables induction of SAR gene expression and broad spectrum disease resistance in plants. The invention further concerns transformation vectors and processes for overexpressing the NIM1 gene in plants. The transgenic plants thus created have broad spectrum disease resistance.

REFERENCES:
patent: 5614395 (1997-03-01), Ryals et al.
Stam M, et al. "The silence of genes in transgenic plants." Ann. Bot. 79: 3-12, 1997.
Koziel MG, et al. "Optimizing expression of transgenes with an emphasis on post-transcriptional events." Plant Mol. Biol. 32: 393-405, 1996.
Smith CJS, et al. "Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes." Nature 334: 724-726, Aug. 25, 1988.
Newman T, et al. "Genes galore: A summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones." Plant Physiol. 106: 1241-1255, 1994.
Rothstein SJ, et al. "Promoter cassettes, antibiotic-resistance genes, and vectors for plant transformation." Gene 53: 153-161, 1987.
Genback Accession No. T22612, Cao et al., Cell 88(1): 57-63 (1997).
Genback Accession No. U76707, Newman et al., Plant Physiol., 106: 1241-1255 (1994).
Hunt et al., Recent advances in systemic acquired resistance research--a review, Gene, 179: 89-95 (1996).
Alexander et al., "Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a", Proc. Natl. acad. Sci. 90: 7327-7331 (1993).
Bell et al., "Assignment of 30 Microsatellite Loci to the Linkage Map of Arabidopsis", Genomics 19, 137-144 (1994).
Bhat, K.S., "Generation of a plasmid vector for deletion cloning by rapid multiple site-directed mutagenesis", Gene 134: 83-87 (1993).
Bi et al., "Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression", The Plant Journal, 8(2): 235-245 (1995).
Bouchez et al., "A new YAC library for genome mapping in Arabidopsis", Abstract, 6.sup.th International Conference on Arabidopsis Research (1995).
Bowling et al., "A Mutation in Arabidopsis That Leads to Constitutive Expression of Systemic Acquired Resistance", The Plant Cell, 6: 1845-1857 (1994).
Buschges et al., "The Barley MIo Gene: A Novel Control Element of Plant Pathogen Resistance", Cell, 88: 695-704 (1997).
Cameron et al., "Biologically induced systemic acquired resistance in Arabidopsis thaliana", The Plant Journal 5(5): 715-725 (1994).
Cao et al., "Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance", The Plant Cell, 6: 1583-1592 (1994).
Cao et al., "The Arabidopsis NPR1 Gene that Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin Repeats", Cell, 88: 57-63 (1997).
Century et al., "NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal protein", Proc. Natl. Acad. Sci., 92: 6597-6601 (1995).
Creusot et al., "The CIC library: a large insert YAC library for genome mapping in Arabidopsis thaliana", The Plant Journal, 8(5): 763-770 (1995).
Delaney et al., "A Central Role of Salicylic Acid in Plant Disease Resistance", Science, 266: 1247-1250 (1994).
Delaney et al., "Arabidopsis signal transduction mutants defective in chemically and biologically induced disease resistance", Abstract, 6.sup.th International Meeting on Arabidopsis Research, (1995).
Delaney et al., "Arabidopisis signal transduction mutant defective in chemically and biologically induced disease resistance", Proc. Natl. Acad. Sci., 92: 6602-6606 (1995).
Delaney, T.P., "Genetic Dissection of Acquired Resistance to Disease", Plant Physiol. 113: 1-12 (1997).
Dietrich et al., "Arabidopsis Mutants Simulating Disease Resistance Response", Cell 77: 565-577 (1994).
Elledge et al., ".lambda.YES: Amultifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations", Proc. Natl. Acad. Sci., USA 88:1731-1735 (1991).
Friedrich et al., "A benzothiadiazole derivative induces systemic acquired resistance in tobacco", The Plant Journal, 10: 61-70 (1996).
Gaffney et al., "Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance", Science 261: 754-756 (1993).
Gatz C., "Chemical Control of Gene Expression", Ann. Rev. Plant Physiol. Plant Mol. Biol. 48: 89-108 (1997).
Glazebrook et al., "Isolation of Arabidopsis Mutants With Enhanced Disease Susceptibility by Direct Screening", Genetics 143: 973-982 (1996).
Gorlach et al., "Benzothiadiazole, a Novel Class of Inducers of Systemic Acquired Resistance, Activates Gene Expression and Disease Resistance in Wheat", The Plant Cell 8: 629-643 (1996).
Greenberg et al., "Programmed Cell Death in Plants: A Pathogen-Triggered Response Activated Coordinately with Multiple Defense Functions", Cell 77: 551-563 (1994).
Hebsgaard et al., "Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information", Nucleic Acids Research 24: 3439-3452 (1996).
Hunt et al., "Systemic Acquired Resistance Signal Transduction", Critical Reviews in Plant Sciences 15: 583-606 (1996).
Kessmann et al., "Induction of Systemic Acquired Disease Resistance in Plants by Chemicals", Annu. Rev. Phytopathol. 32: 439-459 (1994).
Lawton et al., "The Molecular Biology of Systemic Acquired Resistance", Mechanisms of Plant Defense Responses, B. Fritig and M. Legrand (eds.) Kluwer Academic Publishers (Netherlands) 422-432 (1993).
Lawton et al., "Systemic Acquired Resistance in Arabidopsis Requires Salicylic Acid but Not Ethylene", Molecular Plant-Microbe Interactions 8: 863-870 (1995).
Lawton et al., "Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway" The Plant Journal 10: 71-82 (1996).
Lister et al., "Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana" The Plant Journal 4: 745-750 (1993).
Liu et al., "Generation of a high-quality P1 library of Arabidopsis suitable for chromosome walking", The Plant Journal 7: 351-358 (1995).
Maher et al., "Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products", Proc. Natl. Acad. Sci., USA, 91: 7802-7806 (1994).
Mauch-Mani et al., "Systemic Acquired Resistance in Arabidopsis thaliana Induced by a Predisposing Infection with a Pathogenic Isolate of Fusarium oxysporum", Molecular Plant-Microbe Interactions 7: 378-383 (1994).
Mauch-Mani et al., "Production of Salicylic Acid Precursors Is a Major Function of Phenylalanine Ammonia-Lyase in the Resistance of Arabidopsis to Peronospora parasitica", The Plant Cell 8: 203-212 (1996).
Metraux et al., "Increase in Salicylic Acid at the Onset of Systemic Acquired Resistance in Cucumber", Science 250: 1004-1006 (1990).
Mindrinos et al., "The A. thaliana Disease Resistance Gene RPS2 Encodes a Protein Containing a Nucleotide-Binding Site and Leucine-Rich Repeats", Cell 78: 1089-1099 (1994).
Pallas et al., "Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus", The Plant Journal 10: 281-293 (1996).
Parker et al., "Characterization of eds1, a Mutation in Arabidopsis Suppressing Resistance to Peronospora parasitica Specified by Several Different RPP Genes", The Plant Cell 8: 2033-2046 (1996).
Payne et al., "Isolation of the genomic clone for pathogenesis-related protein 1a from Nicotiana tabacum cv. Xanthi-nc", Plant Molecular Biology 11: 89-94 (1988).
Ryals et al., "Signal transduction in systemic acquired resistance", Proc. Natl. Acad. Sci. USA 92: 4202-4205 (1995).
Ryals et al., "Systemic Acquired Resistance", The Plant Cell 8: 1809-1819 (1996).
Ryals et al., "The Arabidopsis NIM1 Protein Shows Homology to the Mammalian Transcription Factor Inhibitor IkB", The Plant Cell 9:

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gene encoding a protein involved in the signal transduction casc does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gene encoding a protein involved in the signal transduction casc, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gene encoding a protein involved in the signal transduction casc will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2038702

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.