Gene encoding a protein having symmetric hydrolase activity for

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435196, 435197, 435122, 43525235, 4353201, 435 691, 536 231, 536 232, C12N 914, C12N 916, C12N 918, C12N 120, C12P 1212

Patent

active

061435414

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to proteins having asymmetric hydrolase activity for 4-substituted 1,4-dihydropyridine derivatives, genes encoding the proteins, and the use of the proteins.
2. Description of the Related Art
Of 4-substituted 1,4-dihydropyridine derivatives, those in which two different substituents are attached to the 3- and 5-positions of the dihydropyridine ring have an asymmetric carbon atom at the 4-position thereof and exist in the form of two optical isomers. As a result of investigations on the biological properties of these compounds, it has recently been reported that there is a difference in pharmacological activity, in vivo dynamic behavior, safety and other properties between the optical isomers of each compound [K. Tamazawa et al., J. Med. Chem., Vol. 29, 2504 (1986)]. Where such a compound having an asymmetric carbon atom is used as a drug, the conception of administering only one isomer favorable for use as a drug is being popularized so that no extra burden may be imposed on the living body. From this point of view, various processes for the preparation of optically active 3,5-disubstituted derivatives of 4-substituted 1,4-dihydropyridines are being investigated.
As a general method for the synthesis of optically active 4-substituted 1,4-dihydropyridine derivatives (in particular, 3,5-dicarboxylic acid monoesters), there is known a process comprising the steps of using a (4R)-1,4-dihydropyridine-3 or 5-carboxylic acid monoester as an intermediate and introducing a desired ester group thereinto [A. Ashimori et al., Chem. Pharm. Bull., Vol. 39, 108 (1991)]. Well-known methods for the preparation of such optically active intermediates [i.e., (4R)-1,4-dihydropyridine-3,5-carboxylic acid monoesters] include the chemical process of Shibanuma et. al. [Chem. Pharm. Bull., Vol. 28, 2809 (1980)], as well as the enzymatic process of Achiwa et al. [Tetrahedron Letters, Vol. 32, 5805 (1991)] and the enzymatic process of Charles J. Sih et al. [Tetrahedron Letters, Vol. 32, 3465 (1991)].
However, the above-described processes do not always make it possible to prepare the desired compounds efficiently. Consequently, the present inventors have proposed a simpler and efficient process for converting a 4-substituted 1,4-dihydropyridine-3,5-dicarboxylic acid diester to the corresponding 3,5-dicarboxylic acid monoester efficiently by using a culture of a microorganism such as bacteria of the genera Streptomyces, Paecilomyces, Botryodioplodia and Alternaria (see the pamphlet of PCT International Publication No. 94/05637).
However, there still exists a need for the provision of a more efficient means for the preparation of optically active 4-substituted 1,4-dihydropyridine-3,5-dicarboxylic acid monoesters.
Accordingly, an object of the present invention is to provide isolated genes which are conducive to the efficient preparation of the aforesaid optically active compounds, expression plasmids containing such genes, transformants obtained by using such plasmids, and proteins obtained by culturing such transformants and having asymmetric hydrolase activity for 4-substituted 1,4-dihydropyridine derivatives, as well as means associated with the use thereof.


SUMMARY OF THE INVENTION

The present inventors have succeeded in cloning a DNA fragment containing a gene encoding a protein having asymmetric hydrolase activity for 4-substituted 1,4-dihydropyridine derivatives (hereinafter referred to as "1,4-DHPDs"), from the chromosomal DNA of Streptomyces viridosporus belonging to the aforesaid genus Streptomyces, and expressing the aforesaid gene.
Moreover, as a result of the sequence determination of the aforesaid gene and the characterization of the protein obtained by the expression thereof, there has been obtained extensive information on the relationship between the primary structure of the protein and the aforesaid asymmetric hydrolase activity thereof, and the like. Furthermore, as a result of retrieval on sequence homology and the like by using a datab

REFERENCES:
patent: 5635395 (1997-06-01), Isshiki et al.
Manome, T. et al., GenBank Database, Accession No. M20424, Jun. 1989.
Chem. Pharm. Bull., vol. 39, No. 1 (1991), pp. 108-111.
J. Med. Chem., vol. 29, No. 12 (1986), pp. 2504-2511.
Nucleic Acids Res., vol. 13, No. 24 (1985), pp. 8913-8926.
T. Shibanuma et al., "Synthesis of Optically Active 2-(N-Benzyl-N-methylamino)ethyl Methyl 2,6-Dimethyl-4-(m-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (Nicardipine.sup.1)", Chem. Phar. Bull., vol. 28, No. 9, pp. 2809-2812, (1980).
K. Achiwa et al., "Acyloxymethyl as an Activating Group in Lipase-Catalyzed Enantioselective Hydrolysis. A Versatile Approach to Chiral 4-Aryl-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylates" Tetrahedron Letters, vol. 32, No. 41, pp. 5805-5808, (1991).
C. J. Shih et al., "A Chemoenzymatic Synthesis of Optically-Active Dihydropyridines", Tetrahedron Letters, vol. 32, No. 29, pp. 3465-3468, (1991).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gene encoding a protein having symmetric hydrolase activity for does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gene encoding a protein having symmetric hydrolase activity for , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gene encoding a protein having symmetric hydrolase activity for will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1639436

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.