Gene delivery device and gene delivery method

Surgery – Means for introducing or removing material from body for... – Treating material introduced into body by contact with wound...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S518000, C604S522000, C536S023100, C514S04400A

Reexamination Certificate

active

06821264

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a gene delivery device for localizing and enhancing the efficacy of gene transfer.
BACKGROUND OF THE INVENTION
Gene transfer is a powerful technique which uses a biological vehicle (such as an engineered adenovirus) to introduce a specific gene of interest into a target tissue. Studies have characterized the morphologic, biochemical, and functional effects of recombinant gene expression in a wide variety of tissues, including animal and human cerebral arteries, and support the applicability of gene therapy for the treatment of vascular diseases, including cerebrovascular disease (Chen, et al., Trends in Pharmacological Sciences 19: 276-286,1998; Khurana, et al., Journal of Cerebral Blood Flow and Metabolism 20: 1360-1371,2000).
Ooboshi, et al. (Circulation Research 77: 7-13,1995) carried out the first gene transfer to cerebral arteries in vivo. In their purely morphologic study, the investigators delivered a replication-incompetent adenoviral vector (expressing recombinant &bgr;-galactosidase gene) into the cerebrospinal fluid (CSF) of Sprague-Dawley rats held in various anatomical positions. One to seven days following injection, the transduced brains of the animals were examined histochemically after appropriate staining. The authors reported: 1. Distribution of recombinant protein staining consistent with the anatomical position in which the rat was held; 2. Good transduction of the adventitial layer of large and small cerebral arteries (consistent with perivascular gene delivery); and 3. Undetectable &bgr;-galactosidase expression by day seven following injection (i.e., indicative of short-term recombinant gene expression). In the first functional study of transduced intracranial arteries, Chen, et al. (Circulation Research 80: 327-25 335,1997) reported the morphologic, biochemical, and vasomotor effects of ex vivo transduction of canine basilar artery with an adenoviral (Ad) vector expressing recombinant endothelial nitric oxide synthase (eNOS). Their principal findings were: 1. Recombinant protein was expressed mainly in the adventitia and, to a lesser extent, in the endothelium of transduced arteries (consistent with ex vivo transduction); 2. Expression of recombinant eNOS in the arterial wall was associated with beneficial vasomotor effects including significantly enhanced relaxations to calcium ionophore A23187, a compound whose receptor-independent relaxing actions are nitric oxide (NO)-mediated, and reduced contractions to uridine triphosphate; and 3. Basal production of cyclic 3′5′-guanosine monophosphate (cGMP; the second messenger for NO-mediated signaling) was significantly increased in AdeNOS-transduced arteries. Immediately following this study, similar findings were reported by Chen, et al. (Proceedings of the National Academy of Sciences of the United States of America (PNAS) 94: 12568-12573,1997) in vivo in dogs. Together, these studies indicated that cerebral arterial tone could be favorably modulated by recombinant eNOS expression in the vessel wall, i.e., that gene transfer could achieve a therapeutic effect. That these findings are reproducible in nonpostmortem human cerebral arteries has been recently demonstrated by Khurana, et al. (supra).
To date, most ex vivo and in vivo gene transfer studies in the cardiovascular system have utilized recombinant adenoviruses in the titer range of 10
9
-10
10
plaque forming units (PFU), exposing tissues to approximately 1 to 10 billion infectious (viral) units. Based on studies related to cerebrovascular gene transfer, this translates to exposing each target cell to approximately 1000 infectious units, thereby setting the stage for excessive immunogenicity and cytotoxicity from the relatively large “vector load.” Despite the large amounts of virus being delivered to tissue sites, experiments involving recombinant &bgr;-galactosidase- or luciferase-based quantification of adenovirus-mediated gene transfer efficiency demonstrate relatively poor transduction of arteries ex vivo, which is likely to be even poorer in vivo (Heistad, et al., Stroke 27: 1688-1693,1996). To some extent this phenomenon may be attributable to a relative paucity of coxsackie virus-adenovirus receptor (CAR), in cerebral arteries (Heistad, et al., supra). However, regardless of the underlying reason(s), development of techniques to greatly reduce the number of infectious units delivered to tissues, including blood vessels, ex vivo and ultimately in vivo, is required in order to reduce the likelihood and severity of an adverse response to the vector due to the sheer number of particles delivered to the host.
Several recent publications have reported the feasibility of direct gene transfer, without the use of viral vectors, into tissues such as muscle (Ferry, et al., PNAS 88: 8777-8781,1991; Quantin, et al., PNAS 89: 2581-2584,1992), hematopoletic stem cells (Clapp, et al., Blood 78: 1132-1139,1991), arterial wall (Nabel, et al., Science 2: 1342-1344,1989), nerve (Price, et al., PNAS 84: 156-160,1987), and lung (Rosenfeld, et al., Science 252: 431-434,1991). Direct injection of DNA into skeletal muscle, (Wolff, et al., Science 247: 1465-1468,1990) and heart (Kitsis, et al., PNAS 88: 4138-4142,1991), and injection of DNA-lipid complexes into the vasculature (Lim, et al., Circulation 83: 2007-2011,1991; Leclerc, et al., Journal of Clinical Investigation 90: 936-944,1992; Chapman, et al., Circulation Research 71: 27-33,1992) has also been reported to yield a detectable level of recombinant gene-product expression in vivo. However, conventional vector delivery methods, including ex vivo “dripping” or “immersion techniques, and in vivo dripping or injection, remain inefficient and poorly tissue-specific.
Heistad and colleagues (supra) first reported the use of a mechanical method, namely controlled animal head-tilt, to assist in localizing vectors injected into the CSF via the cisterna magna to arteries in the circle of Willis. While this technique is helpful, it remains relatively nonspecific and operator-dependent. A molecular targeting technique using a cell-specific promoter such as SM22&agr; (selective for smooth muscle cells) rather than a cell-nonspecific promoter such as that derived from cytomegalovirus (CMV) has been demonstrated to be effective in vitro (Kim, et al., Journal of Clinical Investigation 100: 1006-1014,1997), and may be useful in vivo to selectively target vascular as opposed to neuronal or glial tissue. However, at present, there is no way to reliably distinguish between smooth muscle cells in different cerebral arteries, and therefore the problem of being able to target specific vascular territories remains unsolved using this approach.
SUMMARY OF THE INVENTION
The invention provides a device and method for increasing the efficiency of gene transfer by localizing a vector at a desired tissue site and by increasing the uptake of the vector by cells at the tissue site. In one embodiment, the invention provides a method for delivering a pharmaceutical composition comprising a nucleic acid to a tissue site. The method comprises the steps of providing a gene delivery device comprising a contact surface, and applying the pharmaceutical composition to the contact surface. The contact surface is then contacted to the tissue, thereby placing and localizing the pharmaceutical composition at the tissue site. Contact with the tissue by the contact surface significantly enhances transduction of the tissue by the nucleic acid relative to transduction of noncontacted tissue to which the pharmaceutical composition is applied. In one embodiment of the invention, transduction efficiency is enhanced greater than 10-fold.
In one embodiment of the invention, the pharmaceutical composition comprises a nucleic acid selected from the group consisting of DNA, RNA, anti-sense molecules, triple-helix-forming nucleic acids, aptamers, and ribozymes. In another embodiment of the invention, the nucleic acid is encapsulated, such as by viral proteins or by a liposome coat. In a further embodiment

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gene delivery device and gene delivery method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gene delivery device and gene delivery method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gene delivery device and gene delivery method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3309164

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.