Gels with a shape memory

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S262000, C526S264000, C526S307300, C526S307500, C526S307700, C526S307800, C526S320000, C526S329200, C526S347000

Reexamination Certificate

active

06538089

ABSTRACT:

The present invention relates to a physically cross-linked copolymer and uses of the copolymer.
In today's rapidly expanding technological world, there is an ever-growing trend for a new generation of “intelligent” materials. Materials can change their properties in accordance to their environment in a “smart” way. They have the advantage of being less limited by design constraints. One such category of these intelligent materials is “smart” or stimuli-responsive polymers.
Stimuli-responsive polymers have generated an explosion of interest since their relatively recent discovery due to their potential application In extraction, absorption, actuator and drug-delivery systems. These polymers are water-soluble but undergo a sharp conformational change to become water insoluble and separate out of solution, when a small change in temperature, pH or solvent composition takes place.
A thermo-sensitive smart polymer is soluble at temperatures below its lower critical solution temperature (LCST) and then undergoes a distinct phase change at the LCST, see Galaev, I. Y. et al. CHEMTECH, (1996), pages 19-25. When chemically cross-linked, such polymers give stimuli responsive polymer gels. Application of an external stimulus can cause these gels to shrink or expand to many times their volume, with an expulsion or absorption of water.
Hachisako, H. et al., Recent Res. Devel. In Pure & Applied Chem. (1998), vol. 2, pages 547-561 describes formation of a shape-remembered hydrogel upon heating, which consists of a NIPAM telomer with a stilbazole terminal group. The hydrogel redissolves very slowly when cooled to below its cloud point without stirring.
It has now surprisingly been found according to the present invention, that a novel physically cross-linked copolymer of three different monomers also has the ability of forming a shape-remembering hydrogel upon heating.
SUMMARY OF THE INVENTION
An object for the present invention is to provide a “smart” gel, which is not chemically cross-linked.
Another object for the present invention is to provide a “smart” gel, which undergoes a sharp conformational change and is soluble in water under its LCST.
Thus, in accordance with the present invention, there are provided a completely novel, non-chemically cross-linked, thermo-sensitive polymer that separates from the solution on increasing temperature to form a physically cross-linked temporary gel, to yield the shape of the holding vessel. This gel can shrink substantially but still maintain the shape of the vessel. The shrunken polymer gel can be reshaped in another form, simply by dissolution on cooling and repeating the casting process using a different shaped vessel.
Preferable the thermosensitive physically cross-linked gel is formed only at a narrowly defined combination of three monomers, 1) N-isopropyl-acrylamide NASI or 2-hydroxyethyl methacrylate HEMA, 2) styrene and 3) N-acryloyl hydroxy-succinimide.
One embodiment of the present invention is a physically cross-linked;, copolymer comprising hydrophobic monomers, hydrogen bonding monomers, and thermosensitive monomers, said thermosensitive monomers having a distinct phase change at its lower critical solution temperature (LCST) when existing as a homopolymer.
Another embodiment of the present invention is a physically cross-linked copolymer of a three component system consisting of poly (NASI,
18-47
-styrene
10-26
-NIPAAM
40-63
), preferable poly(NASI
23-33
-styrene,
19-23
-NIPAAM
48-58
).
Another embodiment of the present invention is a physically cross-linked copolymer of a three component system consisting of poly(HEMA
1-8
-styrene
19-30
-NIPAAM
65-79
).
Another embodiment of the present invention is use of the physically, cross-linked copolymer for casting shapes of cavities, for production of miniaturised, detailed micro-parts or micro-machine parts, or for production of thermal switches.
Yet another embodiment of the present invention is use of a physically cross-linked copolymer as drug delivery or enzyme delivery system.
Other preferred embodiments of the present invention are defined in the subclaims.
DETAILED DESCRIPTION OF THE PRESENT INVENTION
The overall structure of polymeric gels is governed by a balance, which exists between the attractive and repulsive forces of the cross-linked polymer chains. The four fundamental forces responsible for this are hydrogen bonding, Van der Waals interactions, hydrophobic interactions and ionic interactions.
Whilst these forces are balanced at lower temperatures, the polymer chains are swollen and incorporate water into the network. However, increasing the temperature disturbs this balance, increasing the attractive forces relative to the repulsive ones so that the incorporated water is forced out of the polymer network and the gel shrinks. The shrinking of the polymer gel is due to the enhanced hydrophobic intermolecular interaction of the polymer chains. The water molecules around the polymer gel have more order than those, which are more remote and hence have a lower entropy.
As the temperature is increased the gel shrinks and becomes more ordered, but at the same time the expelled water molecules become less ordered. Therefore, the resulting entropy of the overall polymer matrix is increased, forming the impetus for gel shrinkage and expulsion of water.
Chemically cross-linked, thermo-sensitive gels, are known to exist as copolymers, that possess at least one monomer component exhibiting temperature dependent aqueous solubility, Bromberg, L. E., et al. Advanced Drug Delivery Reviews, Elsevier Science B.V., (1998), 197-220.
This phenomenon was found to be true also, for a physically cross-linked polymer gel and for the inventors investigation this property was provided by N-isopropyl acrylamide (NIPAAM).
The distinctive feature for thermo-sensitive, physically cross-linked polymer gels, however, is in their ability to form reversible cross-links, and to maintain the vessel shape, on shrinkage. The two additional key monomers in the copolymer, that provide these characteristics, are a hydrophobic and a hydrophilic component, styrene and N-acryloxyl-succinimide (NASI), respectively. Styrene adds an element of hydrophobicity to the copolymer, aiding in precipitation. The hydrophilic component, N-acryloxylsuccinimide (NASI), is essential in the complementary formation of hydrogen bonds with NIPAAM, which play a key role in the cross-linking.
The composition range for the three monomers in the copolymer, where this thermo-sensitive, physically cross-linking phenomenon occurs, is quite narrow. Small deviations from this relatively narrow range disturb the necessary balance of forces, resulting in a polymer with more conventional properties.


REFERENCES:
patent: 5834007 (1998-11-01), Kubota
patent: 6018033 (2000-01-01), Chen et al.
patent: 6271300 (2001-08-01), Ohsumi et al.
S. Senel, B. Isik-Yuruksoy, H. Ciciek, and A. Tuncel, “Thermoresponsive Isopropylacrylamide-Vinylpyrrolidone Copolymer By Radiation Polymerization,” J. Appl. Polym Sci., vol. 64, 1997, pp. 1775-1784.
Jing Zhang, and Nicholas A. Peppas, “Synthesis and Characterization Of PH- and Temperature-Sensitive Poly(Methacrylic Acid)/Poly)N-Isopropylacrylamide) Interpentrating Polymeric Networks, ” Macromolecules, vol. 33, 2000, pp. 102-107.
I.Y. Galeav, M.N. Gupta, and B. Mattiasson, “Use Smart Polymers For Bioseperations,” Enabling Science, 1996, pp. 19-25.
Hiroshi Hachisako, and Ryoichi Murakami, “Molecular Assemblies From N- Isopropylacrylamide Oligomers And Their Applications,” Recent Res. Devel. in Pure & Appled Chem., vol. 2, 1998. pp. 547-561.
Lev E. Bromberg, and Eyal S. Ron, “Temperature-Responsive Gels and Thermogelling Polymer Matrices For Protein And Peptide Delivery,” Advanced Drug Delivery Reviews, vol. 31, 1998, pp. 197-221.
Alexander V. Kabanov, Elena V. Batrakova, Nikolai S. Melik-Nubarov, Nikolai A. Fedoseev, Tatiyana Yu. Dorodnich, Valery Yu. Alakhov, Vladimir P. Chekhonin, Irina R. Nazarova, and Victor A. Kabanov, “ A New Class Of Drug Carriers: Micelles Of Poly (Oxyethylene)-Poly(Oxyprpylene) Block Coploymer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gels with a shape memory does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gels with a shape memory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gels with a shape memory will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3036242

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.