Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Plural component system comprising a - group i to iv metal...
Reexamination Certificate
2001-09-05
2002-12-10
Wu, David W. (Department: 1713)
Catalyst, solid sorbent, or support therefor: product or process
Catalyst or precursor therefor
Plural component system comprising a - group i to iv metal...
C502S103000, C502S104000, C502S152000, C526S165000, C526S943000, C556S179000, C556S182000
Reexamination Certificate
active
06492292
ABSTRACT:
TECHNICAL FIELD
This invention relates to novel compositions of matter which are highly effective as catalyst components, and to the preparation and use of such compositions.
BACKGROUND
Partially hydrolyzed aluminum alkyl compounds known as aluminoxanes (a.k.a. alumoxanes) are effective in activating metallocenes for polymerization of olefins. Activating effects of water in such systems were initially noted by Reichert, et al. (1973) and Breslow, et al. (1975), and extended to trimethylaluminum-based systems by Sinn, Kaminsky, et al. (1976). Subsequent research by Sinn and Kaminsky demonstrated that this activation was due to formation of methylaluminoxane from partial hydrolysis of trimethylaluminum present in the system. Methylaluminoxane (a.k.a. methylalumoxane) has become the aluminum co-catalyst of choice in the industry.
Subsequent to the above original discoveries in this field, considerable worldwide effort has been devoted to improving the effectiveness of catalyst systems based on use of aluminoxanes or modified aluminoxanes for polymerization of olefins and related unsaturated monomers.
Representative of many patents in the field of aluminoxane usage in forming olefin polymerization catalyst systems with suitable metal compounds is U.S. Pat. No. 5,324,800 to Welborn et al. which claims an original filing date in 1983. This patent describes olefin polymerization catalysts made from metallocenes of a metal of Groups 4b, 5b, or 6b, and a cyclic or linear C
1
-C
5
alkylaluminoxane. The cyclic and the linear aluminoxanes are depicted, respectively, by the formulas (R—Al—O)
n
and R(R—Al—O)
n
AlR
2
where n is from 1 to about 20, and R is most preferably methyl. The aluminoxanes are made by controlled hydrolysis of the corresponding aluminum trialkyl.
Another relatively early patent in the field, U.S. Pat. No. 4,752,597 to Turner based on a filing date of 1985, describes olefin polymerization catalysts comprising the reaction products of a metallocene complex of group IVB, VB, VIB, and VIII of the periodic table and an excess of aluminoxane. These catalysts are formed by pre-reacting a metallocene and an aluminoxane in mole ratios greater than 12:1, such as about 12:1 to about 100:1, to produce a solid product which precipitates from solution. Despite assertions of suitable catalytic activity, in reality the activity of these materials is so low as to be of no practical importance whatsoever.
In U.S. Pat. Nos. 4,960,878 and 5,041,584 to Crapo et al. modified methylaluminoxane is formed in several ways. One involves reacting a tetraalkyldialuminoxane, R
2
Al—O—AlR
2
, containing C
2
or higher alkyl groups with trimethylaluminum (TMA) at −10 to 150° C. Another involves reacting TMA with a polyalkylaluminoxane (—Al(R)—O—)
n
where R is C
2
alkyl or higher and n is greater than 1, e.g., up to 50. Temperatures suggested for this reaction are −20 to 50° C. A third way involves conducting the latter reaction and then reacting the resultant product, which is indicated to be a complex between trimethylaluminum and the polyalkylaluminoxane, with water. The patent states that the water-to-aluminum ratios used to make the polyalkylaluminoxane reagent have an effect on the activity of the final methylaluminoxane. On the basis of ethylene polymerizations using zirconocene dichloride catalyst and a complex of trimethylaluminum with polyisobutylaluminoxane subsequently reacted with water (MMAO) as co-catalyst, it is indicated in the patent that the highest polymerization activities were achieved with MMAO co-catalyst prepared at H
2
O/Al ratios of about 0.6 to about 1.0 and Al/Zr ratios in the range of 10,000/1 to 400,000/1.
Various references are available indicating that isobutylaluminoxanes themselves are relatively ineffective on their own as co-catalysts. For example, several other reactions of alkylaluminum compounds with water are disclosed in U.S. Pat. Nos. 4,960,878 and 5,041,584. Thus in Example 1 of these patents, DIBAL-O (tetraisobutyldialuminoxane), a commercial product, was prepared by reaction of water with triisobutylaluminum (TIBA) in heptane using a water/TIBA ratio of about 0.5, followed by solvent stripping at 58-65° C. under vacuum. In Examples 3-6 of the patents isobutylaluminoxane (IBAO) was prepared by controlled addition of water to a 25% solution of TIBA in toluene in the temperature range of 0-12° C., followed by heating to 70-80° C. to ensure complete reaction and remove dissolved isobutane. H
2
O/Al ratios used were 0.98, 1.21, 1.14, and 0.88. IBAO was again made in a similar manner in Example 52 of the patents. Here the H
2
O/Al ratio was 0.70, and the product was heated at 75° C. And in Example 70 tri-n-butylaluminum (TNBA) in toluene was treated at 0-10° C. with water followed by heating to 85° C. Ethylene polymerizations using zirconocene dichloride catalyst and various products from the foregoing Examples were conducted. Specific activities (x 10
3
gPE/(gZr.atm C
2
H
4
.hr)) of the catalysts made with DIBAL-O from Ex. 1, IBAO from Ex. 3, and IBAO from Ex. 6 were, respectively, 4.1, 4.2, and 7.7, as compared to 1000 for the catalyst made using conventional MAO as the co-catalyst. The patents acknowledge that tetraisobutyldialuminoxane (DIBAL-O) showed “poor polymerization activity”, and from the foregoing test results the same can be said to apply to IBAO.
WO 96/02580 to Dall'oco, et al. describes olefin polymerization catalysts made by contacting a metallocene of Ti, Zr, or Hf, an organoaluminum compound having at least one specified hydrocarbon substituent on the &bgr;-carbon atom of an aliphatic group bonded to an aluminum atom, and water. Various ways of bringing these components together are suggested. Polymerizations described were carried out using Al/Zr mole ratios ranging from 500 up to as high as 5000.
EP 0 277 004 to Turner, published in 1988, describes the successful preparation and use as catalysts composed of an ionic pair derived from certain metallocenes of Group 4, most preferably bis(cyclopentadienyl)zirconium dimethyl or bis(cyclopentadienyl)hafnium dimethyl, reacted with certain trisubstituted ammonium salts of a substituted or unsubstituted aromatic boron compound, most preferably N,N-dimethylanilinium tetra(pentafluorophenyl)boron. While EP 0 277 004 mentions that compounds containing an element of Groups V-B, VI-B, VII-B, VIII, I-B, II-B, III-A, IV-A, and V-A may be used in forming the catalysts, no specific compounds other than boron compounds are identified. In fact, EP 0 277 004 appears to acknowledge inability to identify specific compounds other than boron compounds by stating: “Similar lists of suitable compounds containing other metals and metalloids which are useful as second components could be made, but such lists are not deemed necessary to a complete disclosure.” See in this connection Hlatky, Turner and Eckman,
J. Am. Chem. Soc.
, 1989, 111, 2728-2729, and Hlatky and Upton,
Macromolecules
, 1996, 29, 8019-8020.
U.S. Pat. No. 5,153,157 to Hlatky and Turner states that its process “is practiced with that class of ionic catalysts referred to, disclosed, and described in European Patent Applications 277,003 and 277,004.” The process of U.S. Pat. No. 5,153,157 involves forming an ionic catalyst system from two components. The first is a bis(cyclopentadienyl) derivative of a Group IV-B metal compound containing at least one ligand which will combine with the second component or portion thereof such as a cation portion thereof. The second component is referred to as an ion exchange compound comprising (1) a cation which will irreversibly react with a ligand of the Group IV-B metal compound and (2) a noncoordinating anion which is bulky, labile, and stable. The second component, also termed an activator component, comprises compounds of Groups V-B, VI-B, VII-B, VIII, I-B, III-B, III-A, IV-A, and V-A identified by a general formula. Besides referring to the boron compounds of EP 277,004, supra, such as tri(n-butylammonium)tetra(pentafluorophenyl)boron and N,N-dimethylanilinium tetra(pentafluorophenyl)boro
Simeral Larry S.
Wu Feng-Jung
Albemarle Corporation
Lu Caixia
Pippenger Phillip M.
Wu David W.
LandOfFree
Gelatinous compositions formed from hydroxyaluminoxane,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Gelatinous compositions formed from hydroxyaluminoxane,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gelatinous compositions formed from hydroxyaluminoxane,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2970747