Internal-combustion engines – Rotary – With compression – combustion – and expansion in a single...
Reexamination Certificate
2002-06-24
2003-12-09
Richter, Sheldon J. (Department: 3748)
Internal-combustion engines
Rotary
With compression, combustion, and expansion in a single...
Reexamination Certificate
active
06659066
ABSTRACT:
CROSS REFERENCE TO RELATED APPLICATIONS
Not applicable
STATEMENT REGARDING FEDERALLY FUNDED RESEARCH OR DEVELOPMENT
No products of Federally Funded Research or Development are reflected in, or referenced in, this disclosure.
REFERENCE TO A MICROFICHE APPENDIX
No Microfiche Appendix is included in this application.
BACKGROUND OF THE INVENTION
At the present time, machines employed for the production of mechanical energy by internal combustion of organic fuel consist primarily of mechanical displacement reciprocating engines and gas turbines.
Reciprocating engines employ reciprocating pistons and valves to accomplish working fluid manipulation and fuel combustion occurs as a periodic process. The functional principles of the reciprocating internal combustion engine are described in terms of the theoretical thermodynamic cycle postulated by Sadi Carnot in 1824 or in terms of one of the theoretical thermodynamic cycles subsequentially postulated by Nicholas Otto in 1876 and Rudolph Diesel in 1892. Gas turbines employ purely rotational aerodynamically interacting components to accomplish working fluid manipulation and fuel combustion is a self-sustaining continuous process. In general, gas turbines theoretically function in accordance with a thermodynamic cycle as postulated by G. B. Breyton in 1876.
Reciprocating engines are economically satisfactory power sources for many commercial applications but are mechanically complex and the reciprocating components and the periodic combustion process are inherent sources of undesirable noise and vibration. In comparison, gas turbine machines characteristically offer the attributes of relatively higher power density and reduced emissions of noise and vibration but offer economic superiority only in applications requiring relatively high measures of delivered power.
Over a number of years significant inventive effort has been directed toward the derivation of a “rotary” internal combustion machine that give the performance characteristics of reciprocating engines but preclude their concomitant mechanical complexity and potential for emission of noise and vibration. The radial vane type rotary machine has been the subject of particular attention in this regard.
Conceptually the rotary vane machine primarily consists of a stationary housing containing a rotationally dynamic mechanical assembly. The stationary housing consists of a containment cylinder installed with end closure structures and ports for movement of combustion air and combustion products through the structural boundary. The rotationally dynamic mechanical assembly primarily consists of a rotational armature and a set of radial vanes. Said rotational armature is precisely or approximately circular in cross section and is concentrically secured on a rotational shaft. Said rotational shaft is constrained by rotational bearings with its rotational axis parallel to but radially displaced from the bore axis of said containment cylinder and its axial ends are configured to interface with external rotational power machines. Said rotational armature is proportioned to have an effective diameter significantly less than the bore diameter of said containment cylinder in order to create an annular space around its periphery. Said rotational armature is fitted with a number of axially oriented radial vane slots equally distributed around its periphery. Each radial vane slot accommodates and provides annular sliding support for one radial vane. Each said radial vane is proportioned to axially extend through the axial length of said rotational armature and radially extend from within said radial vane slot to the bore of said containment cylinder. The set of radial vanes thus subdivides the annular space surrounding said rotational armature into a number of segmental chambers. Since the rotational axis of said rotational armature is radially displaced from the bore axis of said containment cylinder, the relative volume of any said segmental chamber is dependent upon its orbital location and is cyclically changed through rotation of said rotational armature. The dynamic relationship between rotational armature rotation and relative segmental chamber volume is functionally analogous to the relationship between relative cylinder volume and crankshaft rotation as occurs in reciprocating type internal combustion machines and provides the working fluid manipulation features necessary for evolution of a Carnot type heat engine cycle. For a given set of containment cylinder proportions, the manipulated volume is inversely influenced by the diameter of said armature. Within certain limits, the effective compression ratio of the volumetric cycle is directly influenced by both the number of segmental chambers surrounding said rotational armature and the distance separating the rotational axis of said rotational armature from the bore axis of said containment cylinder. Said effective compression ratio is also influenced by the angular width and orbital location of the sectors allocated for the combustion air supply port and for the combustion product discharge port.
A number of patents have been awarded for rotary vane internal combustion machine concept but, despite the potentially excellent qualities offered by the machine, none of the concepts presented in prior art are known to have matured sufficiently to demonstrate practical utility. It is hypothesized that such non-maturation is the result of singular or compounded inadequacies regarding the functional viability of the perceived entities. As known to persons skilled in the art, the fundamental functional viability of all machines is dependent upon their compatibility with natural laws related to physics, mathematics, and chemistry. It is also known that the functional viability of an energy related machine is dependent upon its capability to meet thresholds for overall efficiency and reliability within constraints imposed by economic considerations. Overall efficiency of a thermal machine is critically dependent upon attaining certain minimum thresholds for both thermodynamic cycle efficiency and mechanical efficiency and functional reliability is critically dependent upon maintaining component temperatures within thresholds prescribed by material characteristics. For these reasons the potential functional viability of a thermal machine may be assessed by analytical review of its functional geometry and component features relative to heat cycle efficiency, mechanical efficiency, and thermal management considerations.
For internal combustion machines based on Carnot principles and with numerically equal compression and expansion ratios, the basic relationship between cycle efficiency (“Air Standard Efficiency”) and the effective compression ratio is:
η
c
=
1
-
1
v
(
κ
-
1
)
Where
⁢
:
η
c
=
Cycle
⁢
⁢
Efficency
v
=
Effective
⁢
⁢
Compression
⁢
⁢
Ratio
k
=
Universal
⁢
⁢
Gas
⁢
⁢
Constant
The relationship shown above demonstrates that heat cycle efficiency is favorably influenced by the magnitude of the compression ratio accomplished within the volumetric manipulation. As previously noted, the effective compression ratio of a rotary vane machine is directly influenced by the number of the annular segmental chambers surrounding the armature and the distance between the rotational armature axis and containment cylinder bore axis. Analysis demonstrates that the threshold for adequate cycle efficiency is attained only if the number of segmental chambers surrounding the rotational armature and the distance between the rotational armature axis and containment cylinder bore axis both exceed certain minimum values.
Mechanical efficiency is essentially the measure of mechanical energy conservation exhibited by a mechanism in the process of doing work. Mechanical efficiency is adversely influenced by the quantity of energy dissipated by frictional interaction between dynamically interfacing components and in this context may simply be expressed as:
η
m
=
P
i
-
P
f
P
i
Where
&it
LandOfFree
Gear synchronized articulated vane rotary machine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Gear synchronized articulated vane rotary machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gear synchronized articulated vane rotary machine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3115042