GBIC connector with circuit board mating faces

Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – Within distinct housing spaced from panel circuit arrangement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06241534

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to high speed connectors, and more particularly to connectors for effecting connections between high speed cables and other electronic devices.
There are many receiver and transceiver modules known in the art that are used to provide connectors for transmitting electrical signals between electronic devices and high speed cases. Such transceiver modules may be conventional electronic connectors or they may be utilized in conjunction with an optional data transmission means. Such a module may include a conversion means for converting optical signals to electronic signals or it may include entirely electronic signal conveyance means.
These known modules and connectors typically include an internal circuit board that contains various circuit components. One end of the circuit board may protrude from the connector body while the other end of the circuit board remains inside of the connector body. Leads are terminated to the circuit board at one end and the other ends, the leads are terminated to pins, blade or other type of terminals. These terminations require manual labor and increase the cost of the connector. In order to protect the mating interface within the leads terminated, separate shields must be attached to the connector. Thus, such a termination also involves additional elements.
The present invention is directed to an improved connector for high speed transmission applications which is less expensive to produce than the aforementioned prior art connectors and which also overcomes the aforementioned disadvantages.
SUMMARY OF THE INVENTION
Accordingly, it is a general object of the present invention to provide an improved connector interface for high speed transmission applications.
Another object of the present invention is to provide a gigabit interface connector having an improved termination structure at both ends of the connector, the connector having a connector housing, a printed circuit board disposed in the connector housing and having two opposing ends, the circuit board having an extent greater than the length of the connector, the circuit board ends that protrude through the housing so as to present two distinct mating ends of the circuit board for engagement with opposing components.
Still another object of the present invention is to provide an interface adapter for connecting together a high speed cable with an electronic device, wherein the adapter has an elongated housing with two opposing mating ends, a circuit board extending lengthwise through the housing, the circuit board having a length greater than that of the housing, two opposing ends portions of the circuit board protruding through a body portion of the housing to present two circuit card mating portions, one of the ends of the adapter housing extending over one of the circuit board end portions and forming a receptacle for receiving the plug end of a cable, the one circuit board end portion including means for orienting the plug end with respect to the circuit board end portion.
Yet a still further object of the present invention is to provide an improved gigabit interconnection module that uses edge card mating principle and includes a circuit board extending through its connector housing and protruding through its ends to thereby optimize the electrical characteristics of the signals passing through the interconnect, the first edge of the circuit board serving as a blade portion on one end of the interconnect and the second edge of the circuit board being housed within a receptacle formed by an extension of the housing to receive an end of a cable assembly.
It is still another object of the present invention to provide a connector for cable applications having an improved end structure for connection to a cable connector, the connector having a housing that is easily insertable into and removable from a connector slot formed on a circuit board, the connector having a hollow body portion extending lengthwise, a circuit board with a plurality of circuit traces disposed thereon and may contain some passive and/or active components, the circuit board having first and second opposing ends, the first and second ends of the circuit board passing through openings in corresponding first and second ends of the connector body portion and protruding past the endfaces of the connector body portion, at least one of the first and second circuit board ends being at least partially enclosed by an extension of the connector body portion, the extension being adapted for receiving an opposing connector in the form of a jack.
The present invention accomplishes these and other objects with its novel and unique structure. The connectors of the invention may include a housing having an elongated hollow body portion which houses a printed circuit board. In a departure from the structure present in the prior art, the printed circuit board has first and second opposing, mating ends with circuit pads disposed thereon. The ends of the circuit board each include planar portions with edges that preferably run widthwise of the housing. At one end of the connector, a first mating edge of the circuit board projects outwardly from the connector housing to define a male plug, or blade portion, for meeting with a female style connector of another circuit board or electronic device.
At the other end of the connector, a second mating edge of the circuit board also projects outwardly from the connector housing. The connector housing may have, at this end of the connector, an extension portion that may be integrally formed with part of the housing to define a receptacle with an associated outer shell portion, the receptacle being adapted to accommodate the plug end of a high speed cable assembly, such as an HSSDC cable assembly. The housing extension may be tailored to accept and engage a latch member on a jack-style connector terminated to a plug end of the cable. The housing opening is such that the jack-style connector may be easily inserted into engagement with the circuit board mating end, even in a “blind” manner.
In this regard and with respect to another embodiment of the invention, at least one of the circuit board ends may be formed with one or more slots, preferably on both asides of the conductor pattern on the circuit board. These slots serve as guides, or “lead-ins” that facilitate in the alignment and mating of the cable plug end or any other connector plug end. Not only do these slots help orient the opposing connector with respect to the circuit board for blind connections, but they also help to orient the connector with respect to the interior structure of the circuit board mating end.
In another embodiment of the present invention, the extension portion of the housing is integrally formed therewith to simplify and reduce the time necessary for assembly of the connector. This extension portion acts as a shield that substantially encompasses the interface area of the circuit board edge. In a modification of this aspect, a shell may be provided for the second end of the connector which encompasses the entire width of the circuit board edge. The circuit board in this embodiment, is provided with a plurality of slots defining separate and distinct engagement portions of the circuit card edge, each of which will engage a separate cable plug. The slots serve to align each cable plug into position while the shell is likewise formed with a series of slots and channels aligned with the circuit cord engagement portions to accommodate a “gang” of cables.
These and other objects, features and advantages of the present invention will be clearly understood through consideration of the following detailed description.


REFERENCES:
patent: 3364458 (1968-01-01), Black et al.
patent: 4138711 (1979-02-01), Bremenour et al.
patent: 4256936 (1981-03-01), Lancaster
patent: 4359257 (1982-11-01), Lopinski et al.
patent: 5507668 (1996-04-01), Lambrinos et al.
patent: 5738538 (1998-04-01), Bruch et al.
patent: 5757998 (1998-05-01), Thatcher et al.
patent: 5767999 (1998-06

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

GBIC connector with circuit board mating faces does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with GBIC connector with circuit board mating faces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and GBIC connector with circuit board mating faces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2540828

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.