Mineral oils: processes and products – Refining – Sulfur removal
Reexamination Certificate
2000-08-28
2002-11-19
Norton, Nadine G. (Department: 1764)
Mineral oils: processes and products
Refining
Sulfur removal
C208S248000, C208S20800M
Reexamination Certificate
active
06482315
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the reduction of sulfur in gasoline and other petroleum products produced by a catalytic cracking process. The invention provides a catalytic composition for reducing product sulfur and a process for reducing product sulfur using this composition.
BACKGROUND OF THE INVENTION
Catalytic cracking is a petroleum refining process which is applied commercially on a very large scale. A majority of the refinery gasoline blending pool in the United States is produced by this process, with almost all being produced using the fluid catalytic cracking (FCC) process. In the catalytic cracking process heavy hydrocarbon fractions are converted into lighter products by reactions taking place at elevated temperature in the presence of a catalyst, with the majority of the conversion or cracking occurring in the vapor phase. The feedstock is thereby converted into gasoline, distillate and other liquid cracking products as well as lighter gaseous cracking products of four or less carbon atoms per molecule. The gas partly consists of olefins and partly of saturated hydrocarbons.
During the cracking reactions some heavy material, known as coke, is deposited onto the catalyst. This reduces the activity of the catalyst and regeneration is desired. After removal of occluded hydrocarbons from the spent cracking catalyst, regeneration is accomplished by burning off the coke to restore catalyst activity. The three characteristic steps of the catalytic cracking can be therefore be distinguished: a cracking step in which the hydrocarbons are converted into lighter products, a stripping step to remove hydrocarbons adsorbed on the catalyst and a regeneration step to burn off coke from the catalyst. The regenerated catalyst is then reused in the cracking step.
Catalytic cracking feedstocks normally contain sulfur in the form of organic sulfur compounds such as mercaptans, sulfides and thiophenes. The products of the cracking process correspondingly tend to contain sulfur impurities even though about half of the sulfur is converted to hydrogen sulfide during the cracking process, mainly by catalytic decomposition of non-thiophenic sulfur compounds. The distribution of sulfur in the cracking products is dependent on a number of factors including feed, catalyst type, additives present, conversion and other operating conditions but, in any event a certain proportion of the sulfur tends to enter the light or heavy gasoline fractions and passes over into the product pool. With increasing environmental regulation being applied to petroleum products, for example in the Reformulated Gasoline (RFG) regulations, the sulfur content of the products has generally been decreased in response to concerns about the emissions of sulfur oxides and other sulfur compounds into the air following combustion processes.
One approach has been to remove the sulfur from the FCC feed by hydrotreating before cracking is initiated. While highly effective, this approach tends to be expensive in terms of the capital cost of the equipment as well as operationally since hydrogen consumption is high. Another approach has been to remove the sulfur from the cracked products by hydrotreating. Again, while effective, this solution has the drawback that valuable product octane may be lost when the high octane olefins are saturated.
From the economic point of view, it would be desirable to achieve sulfur removal in the cracking process itself since this would effectively desulfurize the major component of the gasoline blending pool without additional treatment. Various catalytic materials have been developed for the removal of sulfur during the FCC process cycle, but, so far most developments have centered on the removal of sulfur from the regenerator stack gases. An early approach developed by Chevron used alumina compounds as additives to the inventory of cracking catalyst to adsorb sulfur oxides in the FCC regenerator; the adsorbed sulfur compounds which entered the process in the feed were released as hydrogen sulfide during the cracking portion of the cycle and passed to the product recovery section of the unit where they were removed. See Krishna et al,
Additives Improve FCC Process,
Hydrocarbon Processing, November 1991, pages 59-66. The sulfur is removed from the stack gases from the regenerator but product sulfur levels are not greatly affected, if at all.
An alternative technology for the removal of sulfur oxides from regenerator stack gases is based on the use of magnesium-aluminum spinels as additives to the circulating catalyst inventory in the FCCU. Under the designation DESOX™ used for the additives in this process, the technology has achieved a notable commercial success. Exemplary patents disclosing this type of sulfur removal additives include U.S. Pat. Nos. 4,963,520; 4,957,892; 4,957,718; 4,790,982 and others. Again, however, product sulfur levels are not greatly reduced.
A catalyst additive for the reduction of sulfur levels in the liquid cracking products was proposed by Wormsbecher and Kim in U.S. Pat. Nos 5,376,608 and 5,525,210, using a cracking catalyst additive of an alumina-supported Lewis acid for the production of reduced-sulfur gasoline but this system has not achieved significant commercial success.
In application Ser. No. 09/144,607, filed Aug. 31, 1998, catalytic materials are described for use in the catalytic cracking process which are capable of reducing the content of the liquid products of the cracking process. These sulfur reduction catalysts comprise, in addition to a porous molecular sieve component, a metal in an oxidation state above zero within the interior of the pore structure of the sieve. The molecular sieve is in most cases a zeolite and it may be a zeolite having characteristics consistent with the large pore zeolites such as zeolite beta or zeolite USY or with the intermediate pore size zeolites such as ZSM-5. Non-zeolitic molecular sieves such as MeAPO-5, MeAPSO-5, as well as the mesoporous crystalline materials such as MCM-41 may be used as the sieve component of the catalyst. Metals such as vanadium, zinc, iron, cobalt, and gallium were found to be effective for the reduction of sulfur in the gasoline, with vanadium being the preferred metal. The amount of the metal component in the sulfur reduction additive catalyst is normally from 0.2 to 5 weight percent, but amounts up to 10 weight percent were stated to give some sulfur removal effect. The sulfur reduction component may be a separate particle additive or part of an integrated cracking/sulfur reduction catalyst. When used as a separate particle additive catalyst, these materials are used in combination with an active catalytic cracking catalyst (normally a faujasite such as zeolite Y and REY, especially as zeolite USY and REUSY) to process hydrocarbon feedstocks in the FCC unit to produce low-sulfur products.
In application Ser. Nos. 09/221,539 and 09/221,540, both filed Dec. 28, 1998, sulfur reduction catalyst similar to the one described in application Ser. No. 09/144,607 were described, however, the catalyst compositions in those applications also comprise at least one rare earth metal component (e.g. lanthanum) and a cerium component, respectively. The amount of the metal component in the sulfur reduction catalysts is normally from 0.2 to 5 weight percent, but amounts up to 10 weight percent were suggested to give some sulfur removal effect.
In application Ser. No. 09/399,637, filed Sep. 20, 1999, an improved catalytic cracking process for reducing the sulfur content of the liquid cracking products, especially cracked gasoline, produced from hydrocarbon feed containing organosulfur compounds is described. The process employs a catalyst system having a sulfur reduction component containing porous catalyst and a metal component in an oxidation state greater than zero. The sulfur reduction activity of the catalyst system is increased by increasing average oxidation state of the metal component by an oxidation step following conventional catalyst regeneration. The catalyst is normally a molec
Bhore Nazeer
Cheng Wu-Cheng
Kumar Ranjit
Roberie Terry G.
Zhao Xinjin
Artale Beverly J.
Norton Nadine G.
W.R. Grace & Co.-Conn.
LandOfFree
Gasoline sulfur reduction in fluid catalytic cracking does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Gasoline sulfur reduction in fluid catalytic cracking, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gasoline sulfur reduction in fluid catalytic cracking will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2917287