Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – Waste gas purifier
Reexamination Certificate
1999-10-13
2004-08-31
Tran, Hien (Department: 1764)
Chemical apparatus and process disinfecting, deodorizing, preser
Chemical reactor
Waste gas purifier
C422S171000, C422S177000, C422S198000, C422S211000, C096S125000, C096S126000, C096S146000
Reexamination Certificate
active
06783738
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a gas separator for separating carbon dioxide from a mixed gas containing carbon dioxide in an electric power (energy) plant or chemical plant.
Generally, fossil fuel such as natural gas, petroleum gas and coal gas containing carbon dioxide is used in a gas turbine plant and electric power plant. Such fossil fuel is ordinarily composed of carbon monoxide, carbon or other hydrogen carbide.
Therefore, combustion gas after the fuel is burnt under the air includes carbon dioxide, nitrogen oxide, sulfur oxide as well as nitrogen gas and oxygen gas. Emission of harmful gas such as carbon dioxide, nitrogen oxide, and sulfur oxide into the air provides a globally important social problem in viewpoints of warm-up of the earth and environmental pollution.
Although a method of processing nitrogen oxide, sulfur oxide and the like has reached a stage capable of suppressing their values within restriction values on the law with a progress of technology, a processing method for carbon dioxide has not yet found any effective solution because an amount of the carbon dioxide handled in industries is too huge.
Recently, as means for processing carbon dioxide from emission gas discharged into the air after combustion, a solvent for absorbing the carbon dioxide selectively from the emission gas has been proposed by utilizing the nature of the characteristic of releasing the carbon dioxide easily when the absorbed carbon dioxide is heated.
The means for processing carbon dioxide using the solvent mentioned above has the following problems. That is, first, although the carbon dioxide is absorbed when it is left in contact with the solvent, because the contact time cannot be set to infinite, it is difficult to always keep the emission gas and solvent in contact with each other during the operation (running) of the generation plant. Therefore, components of carbon dioxide are left not recovered in the emission gas and then may be discharged into the air.
Secondly, because a large amount of the carbon dioxide is produced in a generation plant, the amount of the solvent necessary for recovering the carbon dioxide also becomes large, so that an enormous amount of heat energy is needed for heating the solvent.
Thus, in the conventional method, the carbon dioxide recovery system itself requires a high cost and further, much cost for operating the system is required.
On the other hand, if looking from other aspect, there have been proposed systems or means using a reproducible energy such as solar energy for generating hydrogen as a fuel and for separating carbon dioxide by applying a steam to the carbon dioxide in a closed loop and condensing steam during the circulation of the mixed gas. However, the structures of these systems or means are complicated and are still on experimental level, so that practical realization thereof needs more time and research.
SUMMARY OF THE INVENTION
An object of the present invention is to eliminate defects or drawbacks encountered in the prior art mentioned above and to provide a gas separator for separating a particular gas by effectively using a gas absorption/releasing material having a characteristic feature which absorbs the particular gas from a mixed gas when a predetermined temperature is reached and then releasing the particular gas when another predetermined temperature is reached.
This and other objects can be achieved according to the present invention by providing, in one aspect, a gas separator for separating a specific gas from a mixed gas, comprising:
an outer casing;
a rotating body disposed inside the casing; and
a drive means mounted to the casing and adapted to drive the rotating body to be rotatable,
the rotating body being formed with first and second flow paths formed independently from each other, the first flow path being provided with a gas absorption/releasing material for absorbing and releasing a specific gas from a mixed gas depending on different temperature zones, wherein fluids of different temperatures depending on a rotating position of the rotating body are fed through the second flow path, a heat is transmitted between the first and the second flow paths, and the specific gas is absorbed and released by changing the temperature of the gas absorption/releasing material in accordance with the rotating position of the rotating body.
In a preferred embodiment of this aspect, the rotating body is composed of a plurality of fan-shaped hollow blocks arranged in a circumferential direction thereof and the gas absorption/releasing material for absorbing and releasing the specific gas from the mixed gas depending on different temperature zones is provided on an inner surface of each of the blocks. The rotating body is provided with a hollow static portion at a rotational (axial) central portion thereof. The static portion is divided into two sections in the circumferential direction thereof so as to form introduction paths for introducing fluids of different temperatures and a plurality of supply paths are formed among a plurality of the blocks by disposing sealing or blocking portions between the static portion and the rotating body and between the rotating body and the casing so as to divide the supply paths into two sections, and the supply paths divided into two sections are communicated with the introduction paths divided into two sections so as to form the second flow path.
The rotating body takes a plurality of rotating positions, the mixed gas is fed to the gas absorption/releasing releasing material at a first rotating position of the rotating body while the specific gas is released from the gas absorption/releasing material at a second rotation position of the rotating body, and blocking or closing portions for blocking communication between the first rotating position and the second rotating position are provided in the casing. The blocks are divided into ones related to an absorption reaction of the specific gas and other ones related to a releasing reaction of the specific gas and the second flow path is divided by the blocking. portions so that the number of blocks related to one of the absorption reaction and the releasing reaction which takes a time longer than another one thereof is larger than the number of blocks related to another one thereof. Either one of a honey-comb member and a fin member is provided in the first and second flow paths.
The casing is provided with a supply port for supplying the mixed gas including the specific gas to the first flow path in the rotating body and a discharge port for releasing the mixed gas after the specific gas is absorbed. The casing may be further provided with a recovery port for recovering the released mixed gas including the specific gas in a high concentration.
In another aspect of the present invention, there is provided a gas separator for separating a specific gas from a mixed gas, comprising:
an outer casing;
a rotating body disposed inside the casing; and
a drive means mounted to the casing and adapted to drive the rotating body to be rotatable,
the rotating body being formed with first and second flow paths are independently from each other, the first flow path being provided with a gas absorption/releasing material for absorbing and releasing a specific gas from a mixed gas depending on different temperature zones, wherein the rotating body takes a plurality of rotating positions including first and second rotating positions, the mixed gas set to a temperature zone necessary for performing an absorption reaction of the specific gas is fed at the first rotating position of the rotating body while a fluid of a temperature necessary for performing a release reaction of the specific gas is fed at the second rotating position of the rotating body, a heat is transmitted between the first and second flow paths and the specific gas is absorbed and released by changing the temperature of the gas absorption/releasing material in accordance with the rotating positions of the rotating body.
In a preferred embodiment of this asp
Hisa Shoichi
Sasaki Takashi
Foley & Lardner LLP
Kabushiki Kaisha Toshiba
Leung Jennifer A.
Tran Hien
LandOfFree
Gas separator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Gas separator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gas separator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3286874