Gas separation using organic-vapor-resistant membranes

Gas separation: processes – Selective diffusion of gases – Selective diffusion of gases through substantially solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C095S047000, C095S051000, C095S054000, C095S055000, C095S096000

Reexamination Certificate

active

06361583

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to the separation of gases from hydrocarbon gas mixtures, such separations including hydrogen from hydrocarbons, carbon dioxide from hydrocarbons, and hydrocarbons from one another. The separation is carried out using hydrocarbon-resistant membranes, and is useful in refineries, petrochemical plants, natural gas fields and the like.
BACKGROUND OF THE INVENTION
Polymeric gas-separation membranes are well known and are in use in such areas as production of oxygen-enriched air, production of nitrogen from air, separation of carbon dioxide from methane, hydrogen recovery from various gas mixtures and removal of organic vapors from air or nitrogen.
The preferred membrane for use in any gas-separation application combines high selectivity with high flux. Thus, the membrane-making industry has engaged in an ongoing quest for polymers and membranes with improved selectivity/flux performance. Many polymeric materials are known that offer intrinsically attractive properties. That is, when the permeation performance of a small film of the material is measured under laboratory conditions, using pure gas samples and operating at modest temperature and pressure conditions, the film exhibits high permeability for some pure gases and low permeability for others, suggesting useful separation capability.
Unfortunately, gas separation in an industrial plant is seldom so simple. The gas mixtures to which the separation membranes are exposed may be hot, contaminated with solid or liquid particles, or at high pressure, may fluctuate in composition or flow rate or, more likely, may exhibit several of these features. Even in the most straightforward situation possible, where the gas stream to be separated is a two-component mix, uncontaminated by other components, at ambient temperature and moderate pressure, one component may interact with the membrane in such a way as to change the permeation characteristics of the other component, so that the separation factor or selectivity suggested by the pure gas measurements cannot be achieved. In gas mixtures that contain condensable components, it is frequently, although not always, the case that the mixed gas selectivity is lower, and at times considerably lower, than the ideal selectivity. The condensable component, which is readily sorbed into the polymer matrix, swells or, in the case of a glassy polymer, plasticizes the membrane, thereby reducing its selective capabilities. A technique for predicting mixed gas performance under real conditions from pure gas measurements with any reliability has not yet been developed.
A good example of these performance problems is the separation of hydrogen from mixtures containing hydrogen, methane and other hydrocarbons. Increasing reliance on low-hydrogen, high-sulfur crudes, coupled with tighter environmental regulations, has raised hydrogen demand in refineries. This is primarily due to increased hydrodesulfurization and hydrocracking; as a result many refineries are now out of balance with respect to hydrogen supply. At the same time, large quantities of hydrogen-containing off-gas from refinery processes are currently rejected to the refinery's fuel gas systems. Besides being a potential source of hydrogen, these off-gases contain hydrocarbons of value, for example, as liquefied petroleum gas (LPG) and chemical feedstocks.
The principal technologies available to recover hydrogen from these off-gases are cryogenic separation, pressure swing adsorption (PSA), and membrane separation. Membrane gas separation, the newest, is based on the difference in permeation rates of gas components through a selective membrane. Many membrane materials are much more permeable to hydrogen than to other gases and vapors. One of the first applications of gas separation membranes was recovery of hydrogen from ammonia plant purge streams, which contain hydrogen and nitrogen. This is an ideal application for membrane technology, because the membrane selectivity is high, and the feed gas is clean (free of contaminants, such as heavier hydrocarbons). Another successful application is to adjust hydrogen/carbon monoxide or hydrogen/methane ratios for synthesis gas production. Again, the feed gas is free of heavy hydrocarbon compounds.
Application of membranes to refinery separation operations has been much less successful. Refinery gas streams contain contaminants such as water vapor, acid gases, olefins, aromatics, and other organics. At relatively low concentrations, these contaminants cause membrane plasticization and loss of selectivity. At higher concentrations they can condense on the membrane and cause irreversible damage to it. When a feedstream containing such components and hydrogen is introduced into a membrane system, the hydrogen is removed from the feed gas into the permeate and the gas remaining on the feed side becomes progressively enriched in hydrocarbons, raising the dewpoint. For example, if the total hydrocarbon content increases from 60% in the feed gas to 85% in the residue gas, the dewpoint may increase by as much as 25° C. or more, depending on hydrocarbon mix. Maintaining this hydrocarbon-rich mixture as gas may require it to be maintained at high temperature, such as 60° C., 70° C., 80° C. or even higher, which is costly and may itself eventually adversely affect the mechanical integrity of the membrane. Failure to do this means the hydrocarbon stream may enter the liquid-phase region of the phase diagram before it leaves the membrane module, and condense on the membrane surface, damaging it beyond recovery. Even if the hydrocarbons are kept in the gas phase, separation performance may fall away completely in the presence of hydrocarbon-rich mixtures. These issues are discussed, for example, in J. M. S. Henis, “Commercial and Practical Aspects of Gas Separation Membranes” Chapter 10 of D. R. Paul and Y. P. Yampol'skii,
Polymeric Gas Separation Membranes
, CRC Press, Boca Raton, 1994. This reference gives upper limits on various contaminants in streams to be treated by polysulfone membranes of 50 psi hydrogen sulfide, 5 psi ammonia, 10% saturation of aromatics, 25% saturation of olefins and 11° C. above paraffin dewpoint (pages 473-474).
A great deal of research has been performed on improved membrane materials for hydrogen separation. A number of these materials appear to have significantly better properties than the original cellulose acetate or polysulfone membranes. For example, modern polyimide membranes have been reported with selectivity for hydrogen over methane of 50 to 200, as in U.S. Pat. Nos. 4,880,442 and 5,141,642. Unfortunately, these materials appear to remain susceptible to severe loss of performance through plasticization and to catastrophic collapse if contacted by liquid hydrocarbons. Several failures have been reported in refinery applications where these conditions occur. This low process reliability has caused a number of process operators to discontinue applications of membrane separation for hydrogen recovery.
Another example of an application in which membranes have difficulty delivering and maintaining adequate performance is the removal of carbon dioxide from natural gas. Natural gas provides more than one-fifth of all the primary energy used in the United States, but much raw gas is “subquality”, that is, it exceeds the pipeline specifications in nitrogen, carbon dioxide and/or hydrogen sulfide content. In particular, about 10% of gas contains excess carbon dioxide. Membrane technology is attractive for removing this carbon dioxide, because many membrane materials are very permeable to carbon dioxide, and because treatment can be accomplished using the high wellhead gas pressure as the driving force for the separation. However, carbon dioxide readily sorbs into and interacts strongly with many polymers, and in the case of gas mixtures such as carbon dioxide/methane with other components, the expectation is that the carbon dioxide at least will have a swelling or plasticizing effect, thereby adversely changing the membrane permea

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gas separation using organic-vapor-resistant membranes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gas separation using organic-vapor-resistant membranes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gas separation using organic-vapor-resistant membranes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2886109

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.