Gas phase process for forming polyketones

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymer of an ethylenically unsaturated reactant with a...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

528271, C08G 6702

Patent

active

055678017

DESCRIPTION:

BRIEF SUMMARY
It is known to form polyketones by the polymerization of carbon monoxide and one or more olefins by a vapor phase polymerization process. For example, U.S. Pat. No. 4,778,876 of M. J. Doyle et al. describes such a process in which the monomers are contacted with the catalyst compositions in the substantial absence of a liquid, non-polymerizable diluent. Any small quantity of diluent that might be present is vaporized and present in exclusively the gaseous state during the polymerization (Col. 3, lines 35-40). This teaching of having any added alcohol diluent present exclusively or substantially in the gaseous condition during the polymerization reaction is substantially echoed by other, more recent patent references: European Patent Publication No. 248,483 (see Col. 3, lines 8-13 and claim 2). European Patent Publication No. 443,587 (see Col. 3, lines 3-8 and claim 2); and European Patent Publication No. 506,168 (see Col. 5, lines 29-35 and claims 8-9).
Netherlands Patent Application No. 9101114, filed Jun. 27, 1991, and corresponding European Patent Publication No. 520,584 advocate a gas phase polymerization process for the manufacture of polyketones in which water is added to the polymerization reaction environment to enhance the polymerization activity of the polymerization process. The amount of water should range from more than one mole per gram atom of Group VIII metal in the catalyst, preferably more than 10 moles, for example, from about 5,000 to about 50,000 moles per mole of Group VIII metal. The upper limit of water added is set by the requirement that gas should form the continuous phase in the reactor. The European patent citation exemplifies the add-on of 1 ml and 7 ml water, respectively, to 8 g of porous carbon monoxide/ethene copolymer catalyst support. The present investigators have determined that a carbon monoxide/ethene copolymer becomes saturated at far higher levels of water add-on than 7 ml, namely, at about 40-43 g. The productivity using 7 ml of water (an add-on of about 88%) was inferior to that observed when a far lower add-on (14% for 1 ml of water) was employed.


SUMMARY OF THE PRESENT INVENTION

The present invention relates to a gas phase process for catalytically polymerizing carbon monoxide and at least one olefin to produce a polyketone. The particular improvement in the process of the present invention is conducting the polymerization in the presence of a catalyst support which is substantially saturated with a liquid, non-polymerizable diluent which increases the amount of polyketone that is formed in the process. In one preferred embodiment of the process, a ketone, such as acetone, is used with the addition of hydrogen to yield a product of reduced molecular weight, increased bulk density, and increased thermal stability.


DETAILED DESCRIPTION OF THE PRESENT INVENTION

The aforementioned U.S. Pat. No. 4,778,876 is incorporated herein by reference for its generalized teaching of how polyketones can be formed by vapor phase polymerization processes in regard to the types of monomers which can be used and the types of catalysts which can be utilized. As indicated before, polymers of carbon monoxide and an olefin, such as ethylene, propylene or combinations of ethylene and propylene is an area of known expertise. Such monomers can be polymerized into high molecular weight linear alternating polymers of carbon monoxide and the olefin or olefins that are chosen by using a catalyst which comprises a compound of a Group VIII metal, such as palladium, cobalt and nickel, an anion of a non-hydrohalogenic acid having a pK, of less than about six and an appropriate polydentate ligand, such as a bidentate ligand of the type shown in the aforementioned U.S. Pat. No. 4,778,876.
In the vapor phase process shown in U.S. Pat. No. 4,778,876, it is taught that the monomers need to be contacted with the catalyst composition in the substantial absence of a liquid non-polymerizable diluent such as a monohydric alcohol having from one to four carbon atoms. In accordance with the present inv

REFERENCES:
patent: 5227464 (1993-07-01), Keijsper
patent: 5237047 (1993-08-01), Keijsper
patent: 5331083 (1994-07-01), Hanna et al.
patent: 5340787 (1994-08-01), Keijsper
patent: 5412070 (1995-05-01), Hanna et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gas phase process for forming polyketones does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gas phase process for forming polyketones, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gas phase process for forming polyketones will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2359432

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.