Gas or air filled polymeric microballoons

Drug – bio-affecting and body treating compositions – In vivo diagnosis or in vivo testing – Ultrasound contrast agent

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S009520, C424S450000

Reexamination Certificate

active

06200548

ABSTRACT:

The present invention concerns air or gas filled microcapsules or microballoons enclosed by an organic polymer envelope which can be dispersed or suspended in aqueous media and used in this form for oral, rectal and urethral applications or for injection into living beings, for instance for the purpose of ultrasonic echography and other medical applications.
The invention also comprises a method for making said microballoons in the dry state, the latter being instantly dispersible in an aqueous liquid carrier to give suspensions with improved properties over existing similar products. Hence, suspensions of the microballoons in a carrier liquid ready for administration are also part of the invention.
It is well known that microbodies or microglobules of air or a gas, e.g. microspheres like microbubbles or microballoons, suspended in a liquid are exceptionally efficient ultrasound reflectors for echography. In this disclosure the term of “microbubble” specifically designates air or gas microspheres in suspension in a carrier liquid which generally result from the introduction therein of air or a gas in divided form, the liquid preferably also containing surfactants or tensides to control the surface properties and the stability of the bubbles. In the microbubbles, the gas to liquid interface essentially comprises loosely bound molecules of the carrier liquid. The term of “microcapsule” or “microballoon” designates preferably air or gas bodies with a material boundary or envelope of molecules other than that of the carrier liquid, i.e. a polymer membrane wall. Both microbubbles and microballoons are useful as ultrasonic contrast agents. For instance injecting into the bloodstream of living bodies suspensions of gas microbubbles or microballoons (in the range of 0.5 to 10 &mgr;m) in a carrier liquid will strongly reinforce ultrasonic echography imaging, thus aiding in the visualization of internal organs. Imaging of vessels and internal organs can strongly help in medical diagnosis, for instance for the detection of cardiovascular and other diseases.
The formation of suspensions of microbubbles in an injectable liquid carrier suitable for echography can be produced by the release of a gas dissolved under pressure in this liquid, or by a chemical reaction generating gaseous products, or by admixing with the liquid soluble or insoluble solids containing air or gas trapped or adsorbed therein.
For instance, in U.S. Pat. No. 4,446,442 (Schering), there are disclosed a series of different techniques for producing suspensions of gas microbubbles in a sterilized injectable liquid carrier using (a) a solution of a tenside (surfactant) in a carrier liquid (aqueous) and (b) a solution of a viscosity enhancer as stabilizer. For generating the bubbles, the techniques disclosed there include forcing at high velocity a mixture of (a), (b) and air through a small aperture; or injecting (a) into (b) shortly before use together with a physiologically acceptable gas; or adding an acid to (a) and a carbonate to (b), both components being mixed together just before use and the acid reacting with the carbonate to generate CO
2
bubbles; or adding an over-pressurized gas to a mixture of (a) and (b) under storage, said gas being released into microbubbles at the time when the mixture is used for injection.
One problem with microbubbles is that they are generally short-lived even in the presence of stabilizers. Thus, in EP-A-131.540 (Schering), there is disclosed the preparation of microbubble suspensions in which a stabilized injectable carrier liquid, e.g. a physiological aqueous solution of salt, or a solution of a sugar like maltose, dextrose, lactose or galactose, is mixed with solid microparticles (in the 0.1 to 1 &mgr;m range) of the same sugars containing entrapped air. In order to develop the suspension of bubbles in the liquid carrier, both liquid and solid components are agitated together under sterile conditions for a few seconds and, once made, the suspension must then be used immediately, i.e. it should be injected within 5-10 minutes for echographic measurements; indeed, because the bubbles are evanescent, the concentration thereof becomes too low for being practical after that period.
Another problem with microbubbles for echography after injection is size. As commonly admitted, microbubbles of useful size for allowing easy transfer through small blood vessels range from about 0.5 to 10 &mgr;m; with larger bubbles, there are risks of clots and consecutive emboly. For instance, in the bubble suspensions disclosed in U.S. Pat. No. 4,446,442 (Schering) in which aqueous solutions of surfactants such as lecithin, esters and esthers of fatty acids and fatty alcohols with polyoxyethylene and polyoxyethylated polyols like sorbitol, glycols and glycerol, cholesterol, or polyoxy-ethylene-polyoxypropylene polymers, are vigorously shaken with solutions of viscosity raising and stabilizing compounds such as mono- and polysaccharides (glucose, lactose, sucrose, dextran, sorbitol); polyols, e.g. glycerol, polyglycols; and polypeptides like proteins, gelatin, oxypolygelatin and plasma protein, only about 50% of the microbubbles are below 40-50 &mgr;m which makes such suspensions unsuitable in many echographic application.
In contrast, microcapsules or microballoons have been developed in an attempt to cure some or the foregoing deficiencies. As said before, while the microbubbles only have an immaterial or evanescent envelope, i.e. they are only surrounded by a wall of liquid whose surface tension is being modified by the presence of a surfactant, the microballoons or microcapsules have a tangible envelope made of substantive material other than the carrier itself, e.g. a polymeric membrane with definite mechanical strength. In other terms, they are microspheres of solid material in which the air or gas is more or less tightly encapsulated.
For instance, U.S. Pat. No. 4,276,885 (Tickner et al.) discloses using surface membrane microcapsules containing a gas for enhancing ultrasonic images, the membrane including a multiplicity of non-toxic and non-antigenic organic molecules. In a disclosed embodiment, these microbubbles have a gelatin membrane which resists coalescence and their preferred size is 5-10 &mgr;m. The membrane of these microbubbles is said to be sufficiently stable for making electrographic measurements; however it is also said that after a period of time the gas entrapped therein will dissolve in the blood-stream and the bubbles will gradually disappear, this being probably due to slow dissolution of the gelatin. Before use, the microcapsules are kept in gelatin solutions in which they are storage stable, but the gelatin needs to be heated and melted to become liquid at the time the suspension is used for making injection.
Microspheres of improved storage stability although without gelatin are disclosed in U.S. Pat. No. 4,718,433 (Feinstein). These microspheres are made by sonication (5 to 30 KHz) of viscous protein solutions like 5% serum albumin and have diameters in the 2-20 &mgr;m range, mainly 2-4 &mgr;m. The microspheres are stabilized by denaturation of the membrane forming protein after sonication, for instance by using heat or by chemical means, e.g. by reaction with formaldehyde or glutaraldehyde. The concentration of stable microspheres obtained by this technique is said to be about 8×10
6
/ml in the 2-4 &mgr;m range, about 10
6
/ml in the 4-5 &mgr;m range and less than 5×10
5
in the 5-6 &mgr;m range. The stability time of these microspheres is said to be 48 hrs or longer and they permit convenient left heart imaging after intravenous injection. For instance, the sonicated albumin microbubbles when injected into a peripheral vein are capable of transpulmonary passage. This results in echocardiographic opacification of the left ventricle cavity as well as myocardial tissues.
Recently still further improved microballoons for injection ultrasonic echography have been reported in EP-A-324.938 (Widder). In this document there are disclosed high concentrations (more than

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gas or air filled polymeric microballoons does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gas or air filled polymeric microballoons, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gas or air filled polymeric microballoons will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2494871

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.