Explosive and thermic compositions or charges – Containing hydrazine or hydrazine derivative
Reexamination Certificate
2001-05-07
2004-01-06
Hardee, John (Department: 1751)
Explosive and thermic compositions or charges
Containing hydrazine or hydrazine derivative
C149S045000
Reexamination Certificate
active
06673172
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to gas generant compositions, especially gas generant compositions employed in various autoignition devices, such as vehicle occupant passive restraint systems (air bags), fire suppressants, aircraft escape chutes, life rafts and the like.
BACKGROUND AND SUMMARY OF THE INVENTION
Auto-ignition and ignition materials are used in many gas generator devices such as protective passive restraints or air bags used in motor vehicles, escape slide chute, life rafts, fire suppressant canisters, and the like, the inflation devices of which are normally stored in a deflated state and are inflated with gas substantially instantaneously at the time of need. Such devices are often stored and used in close proximity to humans and, therefore, must be designed with a high safety factor that is effective under all conceivable operational conditions.
Inflation is sometimes accomplished solely by means of a gas generant composition and its' associated ignition devices. At other times, inflation is accomplished by means of a gas or mixture of gases, such as air, nitrogen, carbon dioxide, helium, and the like, which is stored under pressure, and further pressurized and supplemented at the time of use by the addition of high temperature combustion products produced by the combustion of gas generative compositions and their associated auto-ignition and ignition compositions. The use of a stored, pressurized gas in conjunction with a supplemental gas generative composition is often referred to a “hybrid system”, since it is neither purely stored gas, nor solely reliant on a gas generative composition alone to accomplish inflation. Stored gas pressure in these hybrid inflators can sometimes reach 4,000 psi and greater. As will be discussed later, this condition is an important factor in the present invention. Note that the current invention will be especially useful in all hybrid inflators, whether the stored gas is inert (i.e, nitrogen, helium, argon, etc.) or whether the stored gas is oxygenated (i.e., contains some oxygen in addition to inert gases) to supplement fuel-rich exhaust products from the gas generator.
It is, of course, critical that the gas generative composition be capable of safe and reliable storage without decomposition or ignition at temperatures that are likely to be encountered in a motor vehicle or other storage environment. For example, temperatures as high as about 70 to 85° C. may be reasonably experienced under extreme operational conditions in the field. Further, quality assurance testing during the manufacturing and testing process often requires even higher temperature exposures in the range of 107 to 115° C. and greater. It is important that the gas generative device be thermally stable under these extreme environments where unexpected ignition could endanger people and facilities.
Ignition materials are commonly employed in these gas generative designs to safely ignite the gas generant when an electrical signal is received in response to an automobile impact or other stimulus. The ignition train, consisting of squib, initiator, booster material, auto-ignition device, and other secondary ignitors, must also be thermally stable at the extreme temperatures described above. In certain cases, the subject auto-ignition device may be part of the ignition squib device, separate from the other ignition components, part of the primary or secondary ignitor, or may make up the entire primary and/or secondary ignitor charge depending on the inflator design.
Generally, the air bag inflator, or other related devices, must exhibit benign response to environments wherein the decomposition temperature and gas generation of the primary gas generant, or a significant portion thereof, is reached. This condition would occur in the event that the device is exposed to a fire or high heat condition, such as might develop after an automobile crash or similar event.
Following slow or rapid heating to the decomposition temperature, most air bag inflation devices will decompose so rapidly that over-pressurization and explosion of the device is likely. To prevent this potentially life-threatening condition, inflation devices are often equipped with an auto-ignition material or propellant (hereafter referred to as “AIP”), designed to ignite at a temperature substantially lower than the decomposition temperature of the main gas generative composition. The AIP is usually present in small charges such that when the AIP ignites during a fire or other heating condition, a catastrophic explosion does not occur, but rather the AIP benignly burns and ignites one or more of the components in the ignition train or the main gas generant. The AIP is preferably located within the inflator in an area that is most conducive to thermal conductivity and/or to provide the desired performance characteristics.
As is noted below, where the gas generative composition is subject to melting prior to decomposition, it is desirable that the AIP device functions prior to reaching the melt temperature, as this avoids unpredictable and potentially catastrophic rapid burning and over-pressurization of the liquid components. As will be seen, this is a potential problem with certain gas generative compositions based on ammonium nitrate solid solution and eutectic mixtures.
A review of the art from the past decade shows an initial movement away from highly toxic azide-based gas generative compositions. New, low-cost, lower toxicity, more efficient clean burning replacements for the old azide-containing compositions were sought (see U.S. Pat. No. 6,017,404 to Lundstrom et al and U.S. Pat. No. 5,883,330 to Yoshida). Main gas generative formulations exhibiting higher melt temperatures offered an advantage when selecting an AIP formulation since theory suggests that the AIP must ignite prior to the melting point of the main gas generative composition in order to survive slow cook off. Thus, higher melting points would permit the formulator to select more easily tailored higher auto ignition temperature AIP mixtures. For the higher melting gas generative formulations developed under these goals, many AIP formulations have been tailored to meet higher temperatures in the range of 150 to 180° C. and higher (see U.S. Pat. No. 5,084,118 to Poole).
The search for clean, low-cost oxidizers led to the development of ammonium nitrate (AN)-based formulations. However, some of these formulations suffered from inadequate thermal-cycling stability due to the well-known problems associated with a phase change and volumetric shifts. This problem sometimes led to dimensional instability and grain cracking, which caused the ballistic properties of gas generative device to degrade. In an effort to resolve this problem, the use of certain blended oxidizer systems, wherein AN solid solution and eutectic mixtures were employed, were developed (see U.S. Pat. No. 5,850,053 to Scheffee et al and U.S. Pat. No. 5,411,615 to Sumrail et al).
One drawback to the eutectic mixtures and solid solutions with AN was the aforementioned low melting point characteristic. These formulations often exhibited melting points in the range of 120 to 130° C. This fact, along with the need for new, lighter weight pressure vessels made out of aluminum which suffered from severe strength losses at higher temperatures (see U.S. Pat. No. 5,084,118 to Poole), motivated the industry to search for new AIP mixtures that would provide ignition temperatures in the range of 130 to 170° C.
Initial attempts at development of new low temperature AIP to meet this criteria made use of (1) effective catalyst combined with AP/fuel mixtures (see U.S. Pat. No. 5,763,821 to Wheatley), (2) chlorate-based mixtures in combination with organic sugars and organic acids (see U.S. Pat. No. 5,460,671 to Khandhadia), and (3) low melting oxidizers to increase reactivity of the mixture at the melt zone (see U.S. Pat. No. 5,886,842 to Wilson et al). Recently, U.S. Pat. No. 5,739,460 to Knowlton et al disclosed the use of molybdenum fuels in combina
Greso Aaron J.
Lundstrom Norman H.
Wheatley Brian K.
Atlantic Research Corporation
Hardee John
LandOfFree
Gas generant compositions exhibiting low autoignition... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Gas generant compositions exhibiting low autoignition..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gas generant compositions exhibiting low autoignition... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3222065