Gas diffusion electrode manufacture and MEA fabrication

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S308600, C427S115000, C429S006000

Reexamination Certificate

active

06627035

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to polymer electrolyte membrane fuel cells and methods for producing components thereof. More particularly, this invention relates to a method for producing gas diffusion electrodes and membrane electrode assemblies for polymer electrolyte membrane fuel cells.
2. Description of Prior Art
A polymer electrolyte membrane fuel cell is an electrochemical device comprising an anode electrode, a cathode electrode and an electrolyte in the form of a thin polymeric membrane disposed between the anode electrode and the cathode electrode. Individual polymer electrolyte membrane fuel cells or fuel cell units are stacked with bipolar separator plates separating the anode electrode of one fuel cell unit from the cathode electrode of an adjacent fuel cell unit to produce polymer electrolyte membrane fuel cell stacks. Conventionally, the electrodes are gas diffusion electrodes that are bonded or applied on either side of the solid polymer electrolyte membrane to produce a membrane/electrode assembly (MEA).
The gas diffusion electrode is a porous, electron-conductive layer that is disposed between a catalyst layer and the bipolar separator plates (current collectors). The porous nature of the material comprising the electrode ensures effective diffusion of each reactant gas to the catalyst on the membrane/electrode assembly. In addition, the porous nature of the material also assists in water management during operation of the fuel cell. Too little water causes a high internal resistance due to low humidification of the polymeric membrane while too much water causes flooding of the fuel cell by the water.
A variety of methods for producing gas diffusion electrodes are known including filtration, powder vacuum deposition, spray deposition, electrodeposition, casting, extrusion, and rolling and printing. However, some of these methods are very difficult to scale up to fabricate gas diffusion electrodes with good surface conductivity, gas permeability, uniformity, and long-term hydrophobic and hydrophilic stability.
U.S. Pat. No. 5,998,057 teaches a porous gas diffusion electrode for polymer electrolyte membrane fuel cells which is produced by impregnating a carbonized fiber nonwoven fabric with a mixture of soot suspension and polytetrafluoroethylene suspension, drying the impregnated material at elevated temperatures followed by sintering. A catalytically active layer comprising a noble metal catalyst on a carbon carrier mixed with an ion-conducting polymer in solution or suspension is applied to the sintered fabric. The gas diffusion electrode is combined with a polymer electrolyte membrane so as to form an MEA by pressing the electrode onto the membrane so as to provide contact between the membrane and the catalytically active layer.
U.S. Pat. No. 5,783,325 teaches a method for preparation of gas diffusion electrodes for use in solid polymer electrolyte fuel cells in which an anistropic gas diffusion layer made of a porous carbon matrix through which carbon particles and poly(vinylidene fluoride) are distributed such that the matrix is homogeneously porous is prepared by casting with a doctor knife onto a carbon substrate a blend of poly(vinylidene fluoride) and carbon black dissolved in a solvent for the poly(vinylidene fluoride) and carbon black to form a layer of film on a carbon substrate resulting in penetration of the mixture into at least a portion of the carbon substrate, coagulating the film in a coagulation liquid that is a non-solvent for the poly(vinylidene fluoride) and carbon black, and removing the coagulation solvent. A catalytic layer comprising a coagulated aqueous ink suspension containing catalytic carbon particles and a thermal plastic polymer is painted onto the surface of the gas diffusion layer.
U.S. Pat. No. 5,935,643 teaches a method for manufacturing an electrode for phosphate-type fuel cells in which an electrocatalyst slurry is coated upon an electrode support which is obtained by waterproofing and sintering carbon paper, dried at high temperature in an inert atmosphere and subjected to a rolling process and then to a sintering process.
U.S. Pat. No. 5,474,857 teaches a solid polymer electrolyte in which the reaction area of the electrode is increased by uniformly dispersing and bonding a solid polymer electrolyte and a catalyst and the ability of gas feeding to the reaction site is improved by adding a fluoropolymer so that the catalyst is not excessively loaded. The electrode, which is provided on at least one side of the solid polymer electrolyte, is formed by coating on one side of a gas diffusible layer a mixed dispersion of a noble metal catalyst, a carbon fine powder and a colloidal dispersion of a solid polymer electrolyte.
U.S. Pat. No. 4,849,253 teaches an electrochemical cell electrode produced by applying a plurality of thin layers of a catalyst material onto a substrate, filtering and compacting the layers between additions, until a desired amount is achieved. The catalyst-bearing substrate is then dried and sintered to form an electrode.
To provide sufficient ionic conductivity within the catalyst layer of the gas diffusion electrode, the platinum/carbon powder catalyst must be intimately intermixed with liquid ionomer electrolyte. Thus, the catalyst layer may be described as a Pt/C/ionomer composite that achieves proton mobility while maintaining adequate electronic conductivity to result in a low contact resistance with the gas diffusion layer. To reduce overall costs, it is desired to maintain Pt metal loading at a minimum.
The proton conducting polymeric membrane is the most unique element of the polymer electrolyte membrane fuel cell. The membrane commonly employed in most recent polymer electrolyte membrane fuel cell technology developments is made of a perfluorocarbon sulfonic acid ionomer such as NAFION® by DuPont. W. L. Gore, Asahi Chemical and Glass (Japan) produce similar materials as either commercial or developmental products. These membranes exhibit very high long-term chemical stability under both oxidative and reductive environments due to their Teflon-like molecular backbone. This membrane, when wet with water, can serve at the same time as an effective gas separator between fuel and oxidant. If allowed to dry out, gases can pass through the membrane and the fuel cell can be destroyed as hydrogen and oxygen combine in catalytic combustion.
The main step for fabricating MEAs is to catalyze either the gas diffusion electrode or the polymer electrolyte membrane. In either case, an electrode backing is placed on each side of the polymer electrolyte membrane with a catalyst/electrolyte ionomer layer between each gas diffusion electrode and the membrane to form a membrane electrode assembly. Currently, two methods by various developers are used to put the catalyst/electrolyte ionomer layer between the gas diffusion electrode and the polymer electrolyte membrane. One is a direct deposition method; the other is an indirect deposition method.
In the direct deposition method, the catalyst/electrolyte ionomer layer is directly applied to the polymer electrolyte membrane by coating methods, chemical vapor deposition (CVD), physical vapor deposition (PVD), or electrochemical deposition (ECD). The CVD, PVD and ECD methods are not useful in a fuel cell with a gas phase fuel because these methods cannot deposit the electrolyte ionomer with the catalyst particles, as a result of which there is no electrolyte between the catalyst particles in the gas phase. Electrochemical deposition has been used to make MEAs for a direct methanol fuel cell, in which the electrolyte ionomer is not necessary to exist in the catalyst layer because of the liquid phase fuel. In gas phase fuel cells, the catalyst ink can be directly deposited on the polymer electrolyte membrane surface if the membrane does not wrinkle after touching the solvent in the catalyst ink. Coating methods, such as painting, spraying, screen-printing, etc. are generally used to put catalyst/ionomer ink on the membrane su

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gas diffusion electrode manufacture and MEA fabrication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gas diffusion electrode manufacture and MEA fabrication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gas diffusion electrode manufacture and MEA fabrication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3022675

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.