Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Method of regulating cell metabolism or physiology
Reexamination Certificate
1999-12-01
2001-12-04
LeGuyader, John L. (Department: 1635)
Chemistry: molecular biology and microbiology
Animal cell, per se ; composition thereof; process of...
Method of regulating cell metabolism or physiology
C435S006120, C435S199000, C435S091500, C435S024000
Reexamination Certificate
active
06326199
ABSTRACT:
FIELD OF THE INVENTION
This invention is directed to the synthesis and use of oligonucleotides and macromolecules to elicit RNase H for strand cleavage in an opposing strand. Included in the invention are oligonucleotides wherein at least some of the nucleotides of the oligonucleotides are functionalized to be nuclease resistant, at least some of the nucleotides of the oligonucleotide include a substituent that potentiates hybridization of the oligonucleotide to a complementary strand, and at least some of the nucleotides of the oligonucleotide include 2′-deoxy-erythro-pentofuranosyl sugar moieties. The oligonucleotides and macromolecules are useful for therapeutics, diagnostics and as research reagents.
BACKGROUND OF THE INVENTION
It is well known that most of the bodily states in mammals including most disease states, are effected by proteins. Such proteins, either acting directly or through their enzymatic functions, contribute in major proportion to many diseases in animals and man. Classical therapeutics has generally focused upon interactions with such proteins in an effort to moderate their disease causing or disease potentiating functions. Recently, however, attempts have been made to moderate the actual production of such proteins by interactions with messenger RNA (mRNA) or other intracellular RNA's that direct protein synthesis. It is generally the object of such therapeutic approaches to interfere with or otherwise modulate gene expression leading to undesired protein formation.
Antisense methodology is the complementary hybridization of relatively short oligonucleotides to single-stranded RNA or single-stranded DNA such that the normal, essential functions of these intracellular nucleic acids are disrupted. Hybridization is the sequence specific hydrogen bonding via Watson-Crick base pairs of the heterocyclic bases of oligonucleotides to RNA or DNA. Such base pairs are said to be complementary to one another.
Naturally occurring events that provide for the disruption of the nucleic acid function, as discussed by Cohen in
Oligonucleotides: Antisense Inhibitors of Gene Expression,
CRC Press, Inc., Boca Raton, Fla. (1989) are thought to be of two types. The first is hybridization arrest. This denotes the terminating event in which an oligonucleotide inhibitor binds to target nucleic acid and thus prevents, by simple steric hindrance, the binding of essential proteins, most often ribosomes, to the nucleic acid. Methyl phosphonate oligonucleotides (see, e.g., Miller, et al.,
Anti-Cancer Drug Design
1987, 2, 117) and &agr;-anomer oligonucleotides are the two most extensively studied antisense agents that are thought to disrupt nucleic acid function by hybridization arrest.
In determining the extent of hybridization arrest of an oligonucleotide, the relative ability of an oligonucleotide to bind to complementary nucleic acids may be compared by determining the melting temperature of a particular hybridization complex. The melting temperature (T
m
), a characteristic physical property of double helixes, denotes the temperature in degrees centigrade at which 50% helical (hybridized) versus coil (unhybridized) forms are present. T
m
is measured by using the UV spectrum to determine the formation and breakdown (melting) of hybridization. Base stacking which occurs during hybridization, is accompanied by a reduction in UV absorption (hypochromicity). Consequently a reduction in UV absorption indicates a higher T
m
. The higher the T
m
, the greater the strength of the binding of the strands. Non-Watson-Crick base pairing, i.e. base mismatch, has a strong destabilizing effect on the T
m
.
The second type of terminating event for antisense oligonucleotides involves the enzymatic cleavage of the targeted RNA by intracellular RNase H. The mechanism of such RNase H cleavages requires that a 2′-deoxyribofuranosyl oligonucleotide hybridize to a targeted RNA. The resulting DNA-RNA duplex activates the RNase H enzyme; the activated enzyme cleaves the RNA strand. Cleavage of the RNA strand destroys the normal function of the RNA. Phosphorothioate oligonucleotides are one prominent example of antisense agents that operate by this type of terminating event. For a DNA oligonucleotide to be useful for activation of RNase H, the oligonucleotide must be reasonably stable to nucleases in order to survive in a cell for a time sufficient for the RNase H activation.
Several recent publications of Walder, et al. further describe the interaction of RNase H and oligonucleotides. Of particular interest are: (1) Dagle, et al.,
Nucleic Acids Research
1990, 18, 4751; (2) Dagle, et al.,
Antisense Research And Development
1991, 1, 11; (3) Eder, et al.,
J. Biol. Chem.
1991, 266, 6472; and (4) Dagle, et al.,
Nucleic Acids Research
1991, 19, 1805. In these papers, Walder, et al. note that DNA oligonucleotides having both unmodified phosphodiester internucleoside linkages and modified, phosphorothioate internucleoside linkages are substrates for cellular RNase H. Since they are substrates, they activate the cleavage of target RNA by the RNase H. However, the authors further note that in Xenopus embryos, both phosphodiester linkages and phosphorothioate linkages are also subject to exonuclease degradation. Such nuclease degradation is detrimental since it rapidly depletes the oligonucleotide available for RNase H activation.
As described in references (1), (2), and (4), to stabilize their oligonucleotides against nuclease degradation while still providing for RNase H activation, Walder, et al. constructed 2′-deoxy oligonucleotides having a short section of phosphodiester linked nucleotides positioned between sections of phosphoramidate, alkyl phosphonate or phosphotriester linkages. While the phosphoamidate-containing oligonucleotides were stabilized against exonucleases, in reference (4) the authors noted that each phosphoramidate linkage resulted in a loss of 1.6° C. in the measured T
m
value of the phosphoramidate containing oligonucleotides. Such decrease in the T
m
value is indicative of an undesirable decrease in the hybridization between the oligonucleotide and its target strand.
Other authors have commented on the effect such a loss of hybridization between an antisense oligonucleotide and its targeted strand can have. Saison-Behmoaras, et al., EMBO Journal 1991, 10, 1111, observed that even through an oligonucleotide could be a substrate for RNase H, cleavage efficiency by RNase H was low because of weak hybridization to the mRNA. The authors also noted that the inclusion of an acridine substitution at the 3′ end of the oligonucleotide protected the oligonucleotide from exonucleases.
While it has been recognized that cleavage of a target RNA strand using an antisense oligonucleotide and RNase H would be useful, nuclease resistance of the oligonucleotide and fidelity of the hybridization are also of great importance. Heretofore, there have been no suggestion in the art of methods or materials that could both activate RNase H while concurrently maintaining or improving hybridization properties and providing nuclease resistance even though there has been a long felt need for such methods and materials. Accordingly, there remains a long-felt need for such methods and materials.
OBJECTS OF THE INVENTION
It is an object of this invention to provide oligonucleotides that both activate RNase H upon hybridization with a target strand and resist nuclease degradation.
It is a further object to provide oligonucleotides that activate RNase H, inhibit nuclease degradation, and provide improved binding affinity between the oligonucleotide and the target strand.
A still further object is to provide research and diagnostic methods and materials for assaying bodily states in animals, especially diseased states.
Another object is to provide therapeutic and research methods and materials for the treatment of diseases through modulation of the activity of DNA and RNA.
BRIEF DESCRIPTION OF THE INVENTION
In accordance with one embodiment of this invention there are provided olig
Cook Phillip Dan
Monia Brett P.
ISIS Pharmaceuticals Inc.
Larson Thomas G.
LeGuyader John L.
Woodcock Washburn Kurtz Mackewicz & Norris LLP
LandOfFree
Gapped 2′ modified oligonucleotides does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Gapped 2′ modified oligonucleotides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gapped 2′ modified oligonucleotides will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2562741