Galvanic current measuring method and apparatus for monitoring b

Electricity: measuring and testing – Electrolyte properties

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

324 711, 73 6162, 204434, 435291, G01N 2742, C12M 134

Patent

active

052851621

DESCRIPTION:

BRIEF SUMMARY
This invention relates to a monitoring method and apparatus, and in particular to a method of monitoring the build-up of deposits on surfaces immersed in water and to apparatus for carrying out such method.
Continuous chlorination of seawater cooling supplies for power stations during the summer months is advised to prevent the settlement and growth of species such as mussels which can induce corrosion of copper based condenser tubes and restriction of cooling water flow. Since titanium came into general use, the incentive to provide continuous chlorination for this purpose has diminished. However, chlorination or some other form of biocidal treatment is still required to control the growth of bacterial slime films which form the basis of a micro-fouling layer containing larger organisms, silt, etc. Preventing the formation of the slime film improves heat transfer and reduces the resistance to flow.
There is growing legislative pressure in the United States of America and the EEC to reduce or eliminate the discharge of active chlorine from power stations. This fact, together with a desire for economy in the use of chlorine (or sodium hypochlorite) and the lack of detailed knowledge on the change in the rate of biofouling throughout the year, indicate the need for techniques to monitor the build-up of biofouling films and the effect of anti-fouling procedures on them.
At present the existence of such films can be established only by inspection at outages or inferred indirectly from their effect on condenser performance (vacuum) changes, which may be due to other causes such as steamside fouling of the condenser tubes or maldistribution of steam flows and off-gases.
According to this invention there is provided a method of monitoring the build-up of deposits on surfaces immersed in water, characterised by the steps of passing water through a galvanic cell comprising a pair of dissimilar metal electrodes having means responsive to galvanic current developed between the electrodes connected across the elect-odes, and interpreting changes in the galvanic current developed to obtain an indication of the build-up of deposits on the electrodes.
The method of the invention derives from the fact that in water the degree of galvanic corrosion between metal couples incorporating-noble materials such as titanium and stainless steel depends- very largely on the reduction of oxygen on the cathodic surface. This process is controlled by the biochemical activity of bacterial species present on the cathode surface, and until a basic slime film forms very little current flows.
A rapid increase in galvanic current indicates full development of a slime film which is the precursor of subsequent growth of thicker fouling films.
This invention will now be described by way of example with reference to the drawing, in which:
FIG. 1 is a sectional view of apparatus for use in carrying out the method of the invention and is taken along ling I--I in FIG. 2;
FIG. 2 is a longitudinal sectional view through the apparatus of FIG. 1 and is taken along line II--II in FIG. 1; and
FIG. 3 is a graph illustrating operation of the apparatus of FIGS. 1 and 2.
Referring to the drawings, the apparatus comprises a housing 1 formed by a PVC material tubular member having externally threaded end portions 2 by which the housing 1 can be connected to the cooling water system of a power station, through which seawater 100 flows. Located in the housing 1 is an insert member 3 of blocked PVC material, which defines a passage 4 for the seawater 100 flowing through the apparatus as indicated by arrow F in FIG. 2.
Mounted along opposite sides of the passage 4 and extending the length thereof are two dissimilar metal plate electrodes 5 and 6 having substantially equal area facing surfaces. The electrode 5 is of naval brass while the electrode 6 is of titanium. Otherwise electrodes of steel and stainless steel can be used.
The insert 3 and electrodes 5 and 6 are retained in the housing 1 by end plates 7 of PVC material.
Each of the electrodes 5 and 6 has connec

REFERENCES:
patent: 4576704 (1986-03-01), Chiusole et al.
patent: 4581121 (1986-04-01), Dailey et al.
patent: 4801546 (1989-01-01), Ackland
Bridger Scientific, Inc., Deposit Accumulation Testing Systerm (DATS), Management Tools For Costly Fouling Problems . . . (Description and Price List), Aug. 13, 1987.
InTech Sep. 1985, Monitoring of Fouling Deposits: A Key to Heat Exchanger Management, by Frank L. Roe, Nick Zelver (BSI) and William G. Characklis, Montana State University, pp. 91-94.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Galvanic current measuring method and apparatus for monitoring b does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Galvanic current measuring method and apparatus for monitoring b, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Galvanic current measuring method and apparatus for monitoring b will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-700745

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.