G-CSF hybrid molecules and pharmaceutical compositions

Drug – bio-affecting and body treating compositions – Lymphokine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S192100, C435S069100, C435S069700, C530S351000, C530S402000, C536S023100, C536S023400

Reexamination Certificate

active

06261550

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to granulocyte colony stimulating factor (“G-CSF”) analogs, compositions containing such analogs, and related compositions. In another aspect, the present invention relates to nucleic acids encoding the present analogs or related nucleic acids, related host cells and vectors. In another aspect, the invention relates to computer programs and apparatuses for expressing the three dimensional structure of G-CSF and analogs thereof. In another aspect, the invention relates to methods for rationally designing G-CSF analogs and related compositions. In yet another aspect, the present invention relates to methods for treatment using the present G-CSF analogs.
2. Description of the Related Art
Hematopoiesis is controlled by two systems: the cells within the bone marrow microenvironment and growth factors. The growth factors, also called colony stimulating factors, stimulate committed progenitor cells to proliferate and to form colonies of differentiating blood cells. One of these factors is granulocyte colony stimulating factor, herein called G-CSF, which preferentially stimulates the growth and development of neutrophils, indicating a potential use in neutropenic states. Welte et al.
PNAS-USA
82: 1526-1530 (1985); Souza et al.
Science
232: 61-65 (1986) and Gabrilove,
J. Seminars in Hematology
26:2 1-14 (1989).
In humans, endogenous G-CSF is detectable in blood plasma. Jones et al.
Bailliere's Clinical Hematology
2:1 83-111 (1989). G-CSF is produced by fibroblasts, macrophages, T cells trophoblasts, endothelial cells and epithelial cells and is the expression product of a single copy gene comprised of four exons and five introns located on chromosome seventeen. Transcription of this locus produces a mRNA species which is differentially processed, resulting in two forms of G-CSF mRNA, one version coding for a protein of 177 amino acids, the other coding for a protein of 174 amino acids, Nagata et al.
EMBO J
5: 575-581 (1986), and the form comprised of 174 amino acids has been found to have the greatest specific in vivo biological activity. G-CSF is species cross-reactive, such that when human G-CSF is administered to another mammal such as a mouse, canine or monkey, sustained neutrophil leukocytosis is elicited. Moore et al.
PNAS-USA
84: 7134-7138 (1987).
Human G-CSF can be obtained and purified from a number of sources. Natural human G-CSF (nhG-CSF) can be isolated from the supernatants of cultured human tumor cell lines. The development of recombinant DNA technology, see, for instance, U.S. Pat. No. 4,810,643 (Souza) incorporated herein by reference, has enabled the production of commercial scale quantities of G-CSF in glycosylated form as a product of eukaryotic host cell expression, and of G-CSF in non-glycosylated form as a product of prokaryotic host cell expression.
G-CSF has been found to be useful in the treatment of indications where an increase in neutrophils will provide benefits. For example, for cancer patients, G-CSF is beneficial as a means of selectively stimulating neutrophil production to compensate for hematopoietic deficits resulting from chemotherapy or radiation therapy. Other indications include treatment of various infectious diseases and related conditions, such as sepsis, which is typically caused by a metabolite of bacteria. G-CSF is also useful alone, or in combination with other compounds, such as other cytokines, for growth or expansion of cells in culture, for example, for bone marrow transplants.
Signal transduction, the way in which G-CSF effects cellular metabolism, is not currently thoroughly understood. G-CSF binds to a cell-surface receptor which apparently initiates the changes within particular progenitor cells, leading to cell differentiation.
Various altered G-CSF's have been reported. Generally, for design of drugs, certain changes are known to have certain structural effects. For example, deleting one cysteine could result in the unfolding of a molecule which is, in its unaltered state, is normally folded via a disulfide bridge. There are other known methods for adding, deleting or substituting amino acids in order to change the function of a protein.
Recombinant human G-CSF mutants have been prepared, but the method of preparation does not include overall structure/function relationship information. For example, the mutation and biochemical modification of Cys
18
has been reported. Kuga et al.
Biochem. Biophy. Res. Comm
159: 103-111 (1989); Lu et al.
Arch. Biochem. Biophys.
268: 81-92 (1989).
In U.S. Pat. No. 4,810,643, entitled, “Production of Pluripotent Granulocyte Colony-Stimulating Factor” (as cited above), polypeptide analogs and peptide fragments of G-CSF are disclosed generally. Specific G-CSF analogs disclosed include those with the cysteins at positions 17, 36, 42, 64, and 74 (of the 174 amino acid species or of those having 175 amino acids, the additional amino acid being an N-terminal methionine) substituted with another amino acid, (such as serine), and G-CSF with an alanine in the first (N-terminal) position.
EP 0 335 423 entitled “Modified human G-CSF” reportedly discloses the modification of at least one amino group in a polypeptide having hG-CSF activity.
EP 0 272 703 entitled “Novel Polypeptide” reportedly discloses G-CSF derivatives having an amino acid substituted or deleted at or “in the neighborhood” of the N-terminus.
EP 0 459 630, entitled “Polypeptides” reportedly discloses derivatives of naturally occurring G-CSF having at least one of the biological properties of naturally occurring G-CSF and a solution stability of at least 35% at 5 mg/ml in which the derivative has at least Cys
17
of the native sequence replaced by a Ser
17
residue and Asp
27
of the native sequence replaced by a Ser
27
residue.
EP 0 256 843 entitled “Expression of G-CSF and Muteins Thereof and Their Uses” reportedly discloses a modified DNA sequence encoding G-CSF wherein the N-terminus is modified for enhanced expression of protein in recombinant host cells, without changing the amino acid sequence of the protein.
EP 0 243 153 entitled “Human G-CSF Protein Expression” reportedly discloses G-CSF to be modified by inactivating at least one yeast KEX2 protease processing site for increased yield in recombinant production using yeast.
Shaw,.U.S. Pat. No. 4,904,584, entitled “Site-Specific Homogeneous Modification of Polypeptides,” reportedly discloses lysine altered proteins.
WO/9012874 reportedly discloses cysteine altered variants of proteins.
Australian patent application Document No. AU-A-10948/92, entitled, “Improved Activation of Recombinant Proteins” reportedly discloses the addition of amino acids to either terminus of a G-CSF molecule for the purpose of aiding in the folding of the molecule after prokaryotic expression.
Australian patent application Document No. AU-A-76380/91, entitled, “Muteins of the Granulocyte Colony Stimulating Factor (G-CSF)” reportedly discloses muteins of the granulocyte stimulating factor G-CSF in the sequence Leu-Gly-His-Ser-Leu-Gly-Ile at position 50-56 of G-CSF with 174 amino acids, and position 53 to 59 of the G-CSF with 177 amino acids, or/and at least one of the four histadine residues at positions 43, 79, 156 and 170 of the mature G-CSF with 174 amino acids or at positions 46, 82, 159, or 173 of the mature G-CSF with 177 amino acids.
GB 2 213 821, entitled “Synthetic Human Granulocyte Colony Stimulating Factor Gene” reportedly discloses a synthetic G-CSF-encoding nucleic acid sequence incorporating restriction sites to facilitate the cassette mutagenesis of selected regions, and flanking restriction sites to facilitate the incorporation of the gene into a desired expression system.
G-CSF has reportedly been crystallized to some extent, i.e., EP 344 796, and the overall structure of G-CSF has been surmised, but only on a gross level. Bazan,
Immunology Today
11: 350-354 (1990); Parry et al.
J.Molecular Recognition
8: 107-110 (1988). To date, there have been no reports of the overall structure of G-CS

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

G-CSF hybrid molecules and pharmaceutical compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with G-CSF hybrid molecules and pharmaceutical compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and G-CSF hybrid molecules and pharmaceutical compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2466537

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.