Fuser temperature control sensor which is insensitive to...

Electric heating – Heating devices – With power supply and voltage or current regulation or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S216000, C219S494000, C219S501000, C374S208000

Reexamination Certificate

active

06252207

ABSTRACT:

FIELD OF THE INVENTION
This invention relates in general to mechanisms for controlling the temperature of a fuser assembly for a reproduction apparatus, and more particularly to a reproduction apparatus fuser assembly temperature control mechanism sensor which is insensitive to air currents.
BACKGROUND OF THE INVENTION
In typical commercial electrographic reproduction apparatus (copier/duplicators, printers, or the like), a latent image charge pattern is formed on a uniformly charged charge-retentive or photoconductive member having dielectric characteristics (hereinafter referred to as the dielectric support member). Pigmented marking particles are attracted to the latent image charge pattern to develop such image on the dielectric support member. A receiver member, such as a sheet of paper, transparency or other medium, is then brought into contact with the dielectric support member, and an electric field applied to transfer the marking particle developed image to the receiver member from the dielectric support member. After transfer, the receiver member bearing the transferred image is transported away from the dielectric support member, and the image is fixed (fused) to the receiver member by heat and pressure to form a permanent reproduction thereon.
One type of fuser assembly, utilized in typical reproduction apparatus, includes at least one heated roller and at least one pressure roller in nip relation with the heated roller. The fuser assembly rollers are rotated to transport a receiver member, bearing a marking particle image, through the nip between the rollers. The pigmented marking particles of the transferred image on the surface of the receiver member soften and become tacky in the heat. Under the pressure, the softened tacky marking particles attach to each other and are partially imbibed into the interstices of the fibers at the surface of the receiver member. Accordingly, upon cooling, the marking particle image is permanently fixed to the receiver member.
During the operation of the reproduction apparatus, the fuser assembly operates in various modes having substantially different temperatures. That is for example, between job runs the heated fuser roller will be in a substantially equilibrium condition where there is at most only a small temperature gradient between the outer surface of the fuser roller and the inner core. Then when the job run begins energy (heat) is removed from the fuser roller to the reproductions being fused. As a result, the temperature at the outer surface of the fuser roller droops very quickly. Since the temperature droops substantially from the desired optimum operating setpoint temperature, the logic and control for the reproduction apparatus must turn on the fuser heating device to bring the fuser roller up to its desired operating temperature. However, depending upon the thickness of the fuser roller, there is a time lag until the fuser roller surface receives enough energy to get back to the desired optimum fusing temperature. Furthermore, due to the time lag, the fuser roller may receive a quantity of energy in bringing the roller surface up to the desired operating temperature which will cause an overshoot such that the surface temperature exceeds the desired operating temperature. During the time lag, the droop, or overshoot, in surface temperature of the fusing roller may cause inferior fusing quality.
In order to maintain the fuser roller temperature as close as practical to the desired operating temperature, a control mechanism including a temperature control sensor is provided to send signals that are representative of the fuser roller's surface temperature, to the logic and control unit for the reproduction apparatus. The temperature signal is processed by the logic and control unit, and if the temperature is above or below the set optimum operating value, the logic and control unit changes the available power sent to the fuser roller heater to adjust the fuser roller temperature. A good temperature control sensor mechanism must operate repeatably from sensor to sensor, must be accurate, and must exhibit a fast response. It has been now been determined that the air flow surrounding the temperature sensor has an adverse effect on the operation of the sensor.
SUMMARY OF THE INVENTION
In view of the above, this invention is directed to a mechanism for controlling temperature of the at least one heated fuser element of a fuser, for a reproduction apparatus having a heater for the fuser element, operating at a desired temperature to permanently fix a marking particle image to a receiver member. The temperature controlling mechanism includes a temperature sensing element producing a signal corresponding to a sensed temperature of the fuser element. A temperature sensing face member defines a cavity for receiving the temperature sensing element therein. The temperature sensing face member has a surface configured to correspond to the configuration of the fusing element. A housing is provided having an interior chamber for receiving the temperature sensing face member at one end. Air is substantially trapped in the interior chamber adjacent to the temperature sensing face member. The housing is supported in a bracket for movement so as to engage the temperature sensing face member in contact with the fuser element to accurately sense the temperature thereof. A logic and control unit receives the signal from the temperature sensing element, and in response to receiving the signal, compares the signal to a reference temperature for the fuser element, and activates the heater for the fuser element based on such comparison.
The invention, and its objects and advantages, will become more apparent in the detailed description of the preferred embodiment presented below.


REFERENCES:
patent: 3809855 (1974-05-01), Neal
patent: 3968343 (1976-07-01), Guran
patent: 4000394 (1976-12-01), Bar-on
patent: 4821062 (1989-04-01), Katoh et al.
patent: 4951096 (1990-08-01), Derimiggio et al.
patent: 5281793 (1994-01-01), Gavin et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fuser temperature control sensor which is insensitive to... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fuser temperature control sensor which is insensitive to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuser temperature control sensor which is insensitive to... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2516370

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.