Fused tricyclic compounds, methods and compositions for...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S283000, C514S249000, C514S257000, C514S286000, C514S293000, C514S296000, C514S292000, C544S182000, C544S234000, C544S233000, C544S245000, C544S247000, C544S250000, C546S048000, C546S063000, C546S086000, C546S081000, C546S084000, C546S098000

Reexamination Certificate

active

06380193

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to inhibitors of the nucleic enzyme poly(adenosine 5′-diphospho-ribose)polymerase[“poly(ADP-ribose)polymerase” or “PARP”, which is also sometimes called “PARS” for poly(ADP-ribose) synthetase]. More particularly, the invention relates to the use of PARP inhibitors to prevent and/or treat tissue damage resulting from cell damage or death due to necrosis or apoptosis; neural tissue damage resulting from ischemia and reperfusion injury; neurological disorders and neurodegenerative diseases; to prevent or treat vascular stroke; to treat or prevent cardiovascular disorders; to treat other conditions and/or disorders such as age-related macular degeneration, AIDS and other immune senescence diseases, arthritis, atherosclerosis, cachexia, cancer, degenerative diseases of skeletal muscle involving replicative senescence, diabetes, head trauma, immune senescence, inflammatory bowel disorders (such as colitis and Crohn's disease), muscular dystrophy, osteoarthritis, osteoporosis, chronic and acute pain (such as neuropathic pain), renal failure, retinal ischemia, septic shock (such as endotoxic shock), and skin aging; to extend the lifespan and proliferative capacity of cells; to alter gene expression of senescent cells; or to radiosensitize hypoxic tumor cells.
2. Description of the Prior Art
Poly(ADP-ribose) polymerase (“PARP”) is an enzyme located in the nuclei of cells of various organs, including muscle, heart and brain cells. PARP plays a physiological role in the repair of strand breaks in DNA. Once activated by damaged DNA fragments, PARP catalyzes the attachment of up to 100 ADP-ribose units to a variety of nuclear proteins, including histones and PARP itself. While the exact range of functions of PARP has not been fully established, this enzyme is thought to play a role in enhancing DNA repair.
During major cellular stresses, however, the extensive activation of PARP can rapidly lead to cell damage or death through depletion of energy stores. Four molecules of ATP are consumed for every molecule of NAD (the source of ADP-ribose) regenerated. Thus, NAD, the substrate of PARP, is depleted by massive PARP activation and, in the efforts to re-synthesize NAD, ATP may also be depleted.
It has been reported that PARP activation plays a key role in both NMDA- and NO-induced neurotoxicity, as shown by the use of PARP inhibitors to prevent such toxicity in cortical cultures in proportion to their potencies as inhibitors of this enzyme (Zhang et al., “Nitric Oxide Activation of Poly(ADP-Ribose)Synthetase in Neurotoxicity”,
Science,
263:687-89 (1994)); and in hippocampal slices (Wallis et al., “Neuroprotection Against Nitric Oxide Injury with Inhibitors of ADP-Ribosylation”,
NeuroReport,
5:3, 245-48 (1993)). The potential role of PARP inhibitors in treating neurodegenerative diseases and head trauma has thus been known. Research, however, continues to pinpoint the exact mechanisms of their salutary effect in cerebral ischemia, (Endres et al., “Ischemic Brain Injury is Mediated by the Activation of Poly(ADP-Ribose)Polymerase”,
J. Cereb. Blood Flow Metabol.,
17:1143-51 (1997)) and in traumatic brain injury (Wallis et al., “Traumatic Neuroprotection with Inhibitors of Nitric Oxide and ADP-Ribosylation,
Brain Res.,
710:169-77 (1996)).
It has been demonstrated that single injections of PARP inhibitors have reduced the infarct size caused by ischemia and reperfusion of the heart or skeletal muscle in rabbits. In these studies, a single injection of the PARP inhibitor, 3-amino-benzamide (10 mg/kg), either one minute before occlusion or one minute before reperfusion, caused similar reductions in infarct size in the heart (32-42%). Another PARP inhibitor, 1,5-dihydroxyisoquinoline (1 mg/kg), reduced infarct size by a comparable degree (38-48%). Thiemermann et al., “Inhibition of the Activity of Poly(ADP Ribose)Synthetase Reduces Ischemia-Reperfusion Injury in the Heart and Skeletal Muscle”,
Proc. Natl. Acad. Sci. USA,
94:679-83 (1997). This finding has suggested that PARP inhibitors might be able to salvage previously ischemic heart or skeletal muscle tissue.
PARP activation has also been shown to provide an index of damage following neurotoxic insults by glutamate (via NMDA receptor stimulation), reactive oxygen intermediates, amyloid &bgr;-protein, n-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite N-methyl-4-phenylpyridine (MPP
+
), which participate in pathological conditions such as stroke, Alzheimer's disease and Parkinson's disease. Zhang et al., “Poly(ADP-Ribose) Synthetase Activation: An Early Indicator of Neurotoxic DNA Damage”,
J. Neurochem.,
65:3, 1411-14 (1995). Other studies have continued to explore the role of PARP activation in cerebellar granule cells in vitro and in MPTP neurotoxicity. Cosi et al., “Poly(ADP-Ribose)Polymerase (PARP) Revisited. A New Role for an Old Enzyme: PARP Involvement in Neurodegeneration and PARP Inhibitors as Possible Neuroprotective Agents”,
Ann. N. Y. Acad. Sci.,
825:366-79 (1997); and Cosi et al., “Poly(ADP-Ribose)Polymerase Inhibitors Protect Against MPTP-induced Depletions of Striatal Dopamine and Cortical Noradrenaline in C57B1/6 Mice”,
Brain Res.,
729:264-69 (1996).
Neural damage following stroke and other neurodegenerative processes is thought to result from a massive release of the excitatory neurotransmitter glutamate, which acts upon the N-methyl-D-aspartate (NMDA) receptors and other subtype receptors. Glutamate serves as the predominate excitatory neurotransmitter in the central nervous system (CNS). Neurons release glutamate in great quantities when they are deprived of oxygen, as may occur during an ischemic brain insult such as a stroke or heart attack. This excess release of glutamate in turn causes over-stimulation (excitotoxicity) of N-methyl-D-aspartate (NMDA), AMPA, Kainate and MGR receptors. When glutamate binds to these receptors, ion channels in the receptors open, permitting flows of ions across their cell membranes, e.g., Ca
2+
and Na
+
into the cells and K
+
out of the cells. These flows of ions, especially the influx of Ca
2+
, cause overstimulation of the neurons. The over-stimulated neurons secrete more glutamate, creating a feedback loop or domino effect which ultimately results in cell damage or death via the production of proteases, lipases and free radicals. Excessive activation of glutamate receptors has been implicated in various neurological diseases and conditions including epilepsy, stroke, Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), Huntington's disease, schizophrenia, chronic pain, ischemia and neuronal loss following hypoxia, hypoglycemia, ischemia, trauma, and nervous insult. Recent studies have also advanced a glutamatergic basis for compulsive disorders, particularly drug dependence. Evidence includes findings in many animal species, as well as, in cerebral cortical cultures treated with glutamate or NMDA, that glutamate receptor antagonists block neural damage following vascular stroke. Dawson et al., “Protection of the Brain from Ischemia”,
Cerebrovascular Disease,
319-25 (H. Hunt Batjer ed., 1997). Attempts to prevent excitotoxicity by blocking NMDA, AMPA, Kainate and MGR receptors have proven difficult because each receptor has multiple sites to which glutamate may bind. Many of the compositions that are effective in blocking the receptors are also toxic to animals. As such, there is no known effective treatment for glutamate abnormalities.
The stimulation of NMDA receptors, in turn, activates the enzyme neuronal nitric oxide synthase (NNOS), which causes the formation of nitric oxide (NO), which more directly mediates neurotoxicity. Protection against NMDA neurotoxicity has occurred following treatment with NOS inhibitors. See Dawson et al., “Nitric Oxide Mediates Glutamate Neurotoxicity in Primary Cortical Cultures”,
Proc. Natl. Acad. Sci. USA,
88:6368-71 (1991); and Da

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fused tricyclic compounds, methods and compositions for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fused tricyclic compounds, methods and compositions for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fused tricyclic compounds, methods and compositions for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2899504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.