Furlable keyboard

Coded data generation or conversion – Bodily actuated code generator – Including keyboard or keypad

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C341S020000, C345S156000, C345S157000, C345S215000, C382S228000, C382S218000, C382S317000, C382S103000

Reexamination Certificate

active

06265993

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to keyboards for personal computers, personal digital assistants, wireless terminals, and other portable digital processing devices. More particularly, the invention concerns a furlable keyboard that can be rolled into an extremely compact cylindrical configuration in order to facilitate portability.
2. Description of the Prior Art
By way of background, there has been an increase in the development and use of portable digital processing devices, including laptop computers, and more recently, personal digital assistants or “PDA”s. These developments have necessarily focused attention on computer keyboards, which are not ordinarily amenable to portable use given their size and shape. Reducing the overall size of the keyboard, as seen in laptop computers, or the number of keys, as seen in PDAs, are two well known approaches to enhancing keyboard portability. Another approach to optimizing keyboard portability resides in the notion of a flexible (or foldable) keyboard.
Flexible keyboards have been described in several prior art patents, including U.S. Pat. No. 5,220,521, entitled “Flexible Keyboard for Computers,” U.S. Pat. No. 5,616,897, entitled “Flexible Keyboard,” U.S. Pat. No. 5,666,112, entitled “Key for Flexible Keyboard” and U.S. Pat. No. 5,742,241, entitled “Flexible data entry panel.”
The foregoing patents describe flexible keyboards that can be folded or rolled into relatively compact shapes in order to facilitate portability. Although each proposal has merit, it is submitted that further improvements in flexible keyboards are possible. More particularly, it has been observed that an unsatisfied need remains for a flexible keyboard that is substantially full size when in use, but which is extremely compact when placed in its transport configuration, and which can be constructed at minimal cost using standard circuit components.
BRIEF SUMMARY OF THE INVENTION
In accordance with the present invention, a furlable keyboard apparatus representing an advance in the keyboard art is provided as a solution to the foregoing problem. The keyboard apparatus includes a generally cylindrical housing, made from plastic or the like, that mounts a flexible keyboard such that the keyboard is furlable around the housing when the keyboard apparatus is not in use. The flexible keyboard includes a flexible base layer for supporting the keyboard on a surface, a flexible intermediate circuit board layer, and a flexible protective upper layer.
A plurality of piezoelectric keystroke signal generators are mounted on the intermediate layer of the flexible keyboard in a pattern of generally horizontal key rows and partially diagonal key columns in accordance with standard QWERTY keyboard design. The keystroke signal generators are responsive to finger pressure and are interconnected by logical ORing to provide key group signals whenever a keystroke signal generator in one of a pre-assigned group of keys (usually a key column) is pressed or released. A plurality of key representations are formed on the flexible keyboard over each of the keystroke signal generators and in one-to-one correspondence therewith. The key representations may be formed on the upper flexible keyboard layer, or directly on the keystroke signal generators, as desired.
A digital camera is mounted on a stalk that is pivotally secured to the housing, such that the camera is positionable over the keyboard. The camera generates an output representing a visual image of the keyboard.
A keystroke recognizer is mounted within the housing and outputs keystroke information to a host whenever a user presses or releases one of the key representations. The keystroke recognizer preferably includes a digital controller that executes a keystroke recognition program. Whenever a key group signal is generated by one of the keystroke signal generators, the recognizer activates the camera to generate an imaging signal. Using the key group signal as a filter, the recognizer compares the imaging signal to a library of pre-stored keyboard patterns and then generates a keystroke signal that is output to the host device.
The keystroke recognizer may further include an interface device formed from a low cost Application Specific Integrated Circuit (ASIC) that is packaged, for example, in a DIP (Dual In-Line) pin configuration. The interface device has key group electrical input connections receiving the key group signals from the keystroke signal generators. The interface device also has logical output connections providing binary key group output values to the controller. The interface device preferably includes either a diode pair or an edge detector associated with each key group input connection for identifying positive and negative key group signals and distinguishing key presses from key releases.
In order to provide sensory response to a user, a miniature speaker may be provided in the housing to produce a click in response to the user pressing one of said key representations. Alternatively, a synthesized voice could be output that recites the character being pressed.
The furlable keyboard apparatus is used by unfurling the flexible keyboard from the housing and placing the keyboard and housing on a flat surface. Retractable legs are provided on the housing for preventing the housing from rolling during keyboard operation. The camera stalk is then extended so that the camera is positioned over the center of the keyboard. The keyboard apparatus is powered by the host device via a standard keyboard plug-in interface cable.
As the keystroke recognizer is powered-up, or when a manual reset button on the housing is pressed, the recognizer captures several images of the typing surface, without the user's hands on the keyboard, and stores the images in memory. The recognizer use these images to initialize the recognition software so that it is able to align the received image with the stored patterns, which it uses to recognize individual keystrokes. An audible “ready” tone may be produced when initialization completes. A “fail” tone may be produced if the initialization fails for any reason. The user may begin typing after the “ready” tone is heard.
When the user presses a key representation, the recognizer captures a keyboard image from the digital camera and determines the key group to which the key representation belongs. Using the key group information as a filter, the recognizer compares the captured keyboard image against a pre-stored library of keyboard patterns corresponding to each possible keystroke that can be made on the flexible keyboard. The key group filter speeds up the comparison process by excluding library patterns that are not within the identified key group. When a match occurs between the captured keyboard image and one of the key group library patterns, the recognizer outputs a conventional keystroke signal to the host device, and the system resets to await the next keystroke.
As an optional enhancement to the furlable keyboard apparatus of the present invention, the keystroke recognizer may be programmed to provide a mouse-mode function. A mouse mode button can be provided on the housing to invoke the mouse mode. A pair of mouse-click buttons are also mounted on the housing to input left and right mouse clicks. To invoke the mouse mode, the user presses the mouse mode button with a finger of one hand (the “click” hand) while moving the other hand (the “pointing” hand) within view of the camera. The recognizer tracks the position of the pointing hand and outputs this information to the host in order to control movement of an on-screen mouse pointer image. The recognizer also outputs mouse clicks from the mouse click buttons in order to provide a full range of mouse functions.


REFERENCES:
patent: 5220521 (1993-06-01), Kikinis
patent: 5616897 (1997-04-01), Weber et al.
patent: 5666112 (1997-09-01), Crowley et al.
pate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Furlable keyboard does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Furlable keyboard, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Furlable keyboard will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2511972

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.