Functionally gradient materials and the manufacture thereof

Coating processes – Spraying – Heated coating material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S421100, C427S427000

Reexamination Certificate

active

06495212

ABSTRACT:

The present invention relates to functionally gradient materials such as aluminium/silicon carbide (Al/SiC) based functionally gradient materials. The present invention also relates to processes for the manufacture of functionally gradient materials.
Functionally gradient materials exhibit a variation in chemical composition and/or microstructural parameters, which variation occurs between regions of the material. Typically, such variations will occur across the cross-section of the material thereby providing distinct chemical and micro-structural properties at the two opposed surfaces. Functionally gradient materials may be used to provide a component with opposed surfaces having different tribological characteristics and strength/toughness combinations.
Functionally gradient materials are typically synthesized using a number of techniques that can broadly be classified as: (a) vapour phase techniques, (b) liquid phase techniques, and (c) solid phase techniques. These techniques, besides having their suitability limited to certain specific applications, suffer from one or more of the following limitations: (i) low thickness of the functionally gradient bulk material or coating, (ii) low deposition rate, (iii) complex process requirements, and (iv) high cost of operating the process.
We have now found that functionally gradient materials may be produced using a process which involves the vortex mixing of the ceramic phase in molten metal followed by in-mold gas disintegration and deposition of the gradient composite.
Accordingly there is provided a process for the manufacture of a metal/ceramic based functionally gradient material comprising the steps of:
(i) melting a metal in a crucible;
(ii) adding a solid particulate ceramic material to the molten metal;
(iii) vortex mixing the molten metal and particulate ceramic material to form a gradient slurry;
(iv) allowing the slurry to flow from the crucible; and
(v) disinegrating the slurry using jets of inert gas such that the disintegrated slurry is deposited on a substrate to form the functionally gradient material.
The invention also provides a functionally gradient material manufactured by the process described in the immediately preceding paragraph.
As used herein the term “vortex mixing” refers to a mixing or stirring using an impeller, wherein the impeller is lowered into a liquid or slurry to be mixed and driven by a device such as a motor for a predetermined period of time.
As used herein the term “gradient slurry” refers to a slurry of molten metal and particulate ceramic material, wherein the concentration of the ceramic material varies gradiently through the depth of the slurry.
Metal/ceramic based functionally gradient material produced by the process of the present invention advantageously exhibits a structure showing gradual variation in the concentration of the ceramic particles from the base to the top of the deposited material. Such a structure generally has a low concentration of ceramic particles at the base of the deposited material, gradually increasing to a high concentration at the top.
The functionally gradient materials thus produced advantageously show a relatively uniform distribution of ceramic particles both in the regions of high and low concentrations. The uniform distribution of ceramic particles can be attributed to the dynamic events resulting from the disintegration and deposition step of the processing. We have observed a high degree of uniformity in the distribution of ceramic particles in low concentration regions and a decrease in uniformity of distribution associated with an increase in ceramic particle concentration. This indicates that the top of the deposited material, in general, exhibits an increased tendency of clustering of ceramic particles when compared to the base of the deposited material.
Metals suitable for use as the matrix of the metal/ceramic functionally gradient material include elemental metals and alloys. Examples of suitable metals include aluminium, titanium, magnesium and copper in their elemental as well as alloy forms.
In the process of the present invention the metal is melted in an inert crucible or other suitable container. The metal may be melted by resistance melting based techniques.
The molten metal is then held at a temperature at which it is particularly suited for the blending of solid particulate ceramic materials. The holding temperature may vary from metal to metal and should be equal to or higher than the temperature required by the metal/alloy to wet the ceramic particles. This facilitates the ready incorporation of ceramic particles in the melt.
The solid particulate ceramic materials suitable for use in the present invention include, for example, silicon carbide (SiC), graphite and alumina particles. These particles may, for example, be used in the size range of 3 &mgr;m-100 &mgr;m. The metal/alloy and the ceramic particles advantageously have a significant difference in their density values. Typical examples include the selection of graphite (2.2 g/cc) or SiC (3.2 g/cc) for aluminium based (~2.7 g/cc) matrices.
The vortex mixing of the solid particulate ceramic material into the molten metal preferably includes the stirring of a superheated melt at a speed which is capable of creating a vortex in the melt followed by the gradual addition of ceramic particles into the melt. The judicious selection of melt superheating temperature, stirring speed and mode of ceramic particle addition ensures the incorporation and desired distribution of ceramic particles in the liquid melt. Preferably vortex mixing is carried out in the crucible, for example, a 2.5 kg crucible (using brass as a reference) having a height of about 109 mm, an upper outer diameter of 95 mm and a lower outer diameter of 61 mm, using a stirring rod, for example, having a shaft length of 24 cm and a circular head of about 35 mm diameter. The stirring rod is preferably lowered the lowest possible position in the crucible which does not result in the rod touching the walls of the crucible during stirring. Stirring is preferably conducted at speed of about 250 to about 310 rpm.
The mixed blend is then allowed to flow from the crucible, for example through a central hole in the base of the crucible, and is subsequently disintegrated. Care should be taken to minimize the time between the end of ceramic particles addition and the start of disintegration.
The disintegration is carried out using jets of inert gas. The jets of inert gas are preferably aligned at about 90° to the axis of the slurry stream flowing from the crucible. Suitable inert gases for use in disintegrating the poured molten mixture include for example argon and nitrogen.
The resultant disintegrated mixture thus obtained is deposited onto a substrate, such as a metallic substrate. Typical metals used for substrate include for example iron and copper based materials. The process allows the substrate to be used at ambient temperature thus minimising the operating cost of the process.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.


REFERENCES:
patent: 5622542 (1997-04-01), Thomas et al.
patent: 5718863 (1998-02-01), McHugh et al.
patent: 5980604 (1999-11-01), Lavernia
patent: 6037066 (2000-03-01), Kuwabara
patent: 6106588 (2000-08-01), Skibo et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Functionally gradient materials and the manufacture thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Functionally gradient materials and the manufacture thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Functionally gradient materials and the manufacture thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2962076

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.