Functionalized initiators for anionic polymerization,...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S328800, C525S328900, C525S332800, C525S332900, C525S333100, C525S333200, C525S333300, C525S333500, C525S342000, C525S353000, C525S358000, C525S359100, C525S359400

Reexamination Certificate

active

06720391

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to novel functionalized electrophiles, their analogous initiators, and processes for preparing these compounds. The present invention also relates to homotelechelic, heterotelechelic, and radial functional polydiene polymers, polyarylene polymers and polydiene/polyarylene copolymers, their optionally hydrogenated analogues, their optionally deprotected analogues, and processes for preparing these functionalized polymers.
BACKGROUND OF THE INVENTION
Terminal functionalization of living polymer anions with various electrophiles has been extensively studied. See, for example, U.S. Pat. Nos. 3,786,116 and 4,409,357. More recently, Hirao and Nakahama have introduced the concept of functionalization with an electrophile that contains a protected functional group. This group can then be removed from the polymer (“deprotection”) in a subsequent step. For examples of protected electrophiles in the synthesis of functionalized polymers, see K. Ueda, A. Hirao, and S. Nakahama, Macromolecules, 23, 939 (1990) and M. Tokyamo, A. Hirao, S. Nakahama and K. Takenaka, Macromol. Chem. Phys., 197, 3135 (1996).
Recently, protected acetal and carboxylic acid electrophiles were disclosed, see M. P. Labeau, H. Cramail, and A. Deffieux, Polymer International, 41, 453 (1996) and A. Hirao, H. Nakahama, T. Ishizone, and S. Nakahama, Macromolecules, 26, 2145 (1993), respectively. The articles report polymerizing styrene using butyl lithium to form the living polymer anion. Using the protected acetal and carboxylic acid electrophiles, the resulting polymers included a protected functionality at one end of the polymer chain.
SUMMARY OF THE INVENTION
The present invention provides novel compounds useful as electrophiles for incorporating a protected functionality into a living polymer anion. In particular the electrophiles incorporate a protected carbonyl or carboxyl group into a living polymer. The electrophiles are represented by the formula:
wherein:
each X is independently halogen, preferably selected from the group consisting of chloride, bromide and iodide;
each Z is independently a branched or straight chain hydrocarbon connecting group which contains 1-25 carbon atoms, optionally substituted with aryl or substituted aryl;
each T is independently selected from the group consisting of oxygen, sulfur, nitrogen, and mixtures thereof;
(A—R
1
R
2
R
3
) is a protecting group, in which each A is independently an element selected from Group IVa of the Periodic Table of the Elements; and R
1
, R
2
, and R
3
are each independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, and substituted cycloalkyl;
R, R
4
, and R
5
are each independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl and substituted cycloalkyl;
h is 0 when T is oxygen or sulfur, and 1 when T is nitrogen;
l is an integer from 1 to 7;
m is 1 when T is oxygen or sulfur, and 2 when T is nitrogen;
n is 2 or 3; and
w is 0 or 1,
with the proviso that each T in structure (I) cannot equal oxygen.
The invention also provides hydrocarbon compositions including at least one protected functionalized initiator, which can also be useful for incorporating a protected carbonyl or carboxyl functionality into a polymer structure, as well as processes for making the initiators of the invention. The initiators are represented by the following structures:
wherein:
each M is independently an alkali metal, preferably selected from the group consisting of lithium, sodium, and potassium;
each Z is independently a branched or straight chain hydrocarbon connecting group which contains 3-25 carbon atoms, optionally substituted with aryl or substituted aryl;
each Q is independently a saturated or unsaturated hydrocarbyl group derived by incorporation of one or more compounds selected from the group consisting of conjugated diene hydrocarbons, alkenylsubstituted aromatic compounds, and mixtures thereof into the M-Z linkage;
each v independently ranges from 0 to 5;
each T is independently selected from the group consisting of oxygen, sulfur, nitrogen, and mixtures thereof;
(A—R
1
R
2
R
3
) is a protecting group, in which each A is independently an element selected from Group IVa of the Periodic Table of the Elements; and R
1
, R
2
, and R
3
are each independently selected from the group consisting of hydrogen, alkyl, substituted alkyl aryl, substituted aryl, cycloalkyl, and substituted cycloalkyl;
R, R
4
, and R
5
are each independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, and substituted cycloalkyl;
h is 0 when T is oxygen or sulfur, and 1 when T is nitrogen;
l is an integer from 1 to 7;
m is 1 when T is oxygen or sulfur, and 2 when T is nitrogen;
n is 2 or 3; and
w is 0 or 1.
Compounds (III) and (IV) efficiently polymerize conjugated diene hydrocarbons, alkenylsubstituted aromatic compounds, and mixtures thereof to afford living polymer anions. The resultant polymer anions, functionalized with a protected functional group at the head, can be quenched to afford a mono-functional polymer; reacted with functionalizing agents to form homo- or hetero-telechelic polymers; or coupled to form telechelic or functionalized radial polymers.
The present invention also provides polymers produced using the electrophiles and/or initiators above, as well as process for making such polymers. In this embodiment of the invention, each T of structure (I) may be oxygen.
Such polymers are useful materials in their own right. For example, polymers derived from electrophiles (I) or (II) and/or initiators (III) or (IV), in which T is N, can be useful in the production of tires with low hysteresis. In addition, the polymers derived from electrophiles (I) or (II) and/or initiators (III) or (IV) can be optionally deprotected, either before or after optional hydrogenation, to afford polymers with carboxyl, aldehyde or ketone end groups. These end groups can enter into subsequent copolymerization reactions to form copolymers. Alternatively, the deprotection and copolymerization can be conducted in the same step to afford the copolymer directly.
DETAILED DESCRIPTION OF THE INVENTION
As used herein, the term “alkyl” refers to straight chain and branched C1-C25 alkyl. The term “substituted alkyl” refers to C1-C25 alkyl substituted with one or more lower C1-C10 alkyl, lower alkylthio, or lower dialkylamino. The term “cycloalkyl” refers to C5-C12 cycloalkyl. The term “substituted cycloalkyl” refers to C5-C12 cycloalkyl substituted with one or more lower C1-C10 alkyl, lower alkylthio, or lower dialkylamino. The term “aryl” refers to C5-C25 aryl having one or more aromatic rings, each of 5 or 6 carbon atoms. Multiple aryl rings may be fused, as in naphthyl or unfused, as in biphenyl. The term “substituted aryl” refers to C5-C25 aryl substituted with one or more lower C1-C10 alkyl, lower alkylthio, or lower dialkylamino. Exemplary aryl and substituted aryl groups include, for example, phenyl, benzyl, and the like.
Novel Electrophiles
The electrophiles of the invention of formula (I) and (II) above can be prepared by standard literature procedures. For example, triethyl ortho-3-chloropropionate can be prepared from 3-chloroprionitrile by the method of G. Casy, J. W. Patterson, and R. J. K. Taylor,
Org. Syn. Coll
. Vol. 8, 415 (1993). Substituted dimethyl or diethyl dithio acetals and ketals can be prepared from the corresponding halo aldehydes or halo ketones and methylthiol or ethylthiol and HCl catalyst, as described by H. Zinner,
Chem. Ber.,
83, 275 (1980). Halo substituted 1,3-dithianes can be synthesized from the corresponding halo carbonyl compound, 1,3-propanedithiol, and boron trifuoride etherate catalyst, as detailed by J. A. Marshall and J. L. Belletire,
Tetrahedron Letters,
871 (1971). Analogously, halo substituted 1,3-dithiolanes can be synthesized from the corresponding halo carbonyl compound, 1,3-ethanedithiol, and boron trifluoride et

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Functionalized initiators for anionic polymerization,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Functionalized initiators for anionic polymerization,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Functionalized initiators for anionic polymerization,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3201131

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.