Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...
Reexamination Certificate
1996-09-26
2001-03-06
Teskin, Fred (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Mixing of two or more solid polymers; mixing of solid...
C525S113000, C525S122000, C525S123000, C525S124000, C525S126000, C525S177000, C525S184000, C525S272000, C525S279000, C525S291000, C525S292000, C525S296000, C525S298000, C525S303000, C525S309000, C525S332100, C525S332200, C525S332300, C525S333300, C525S338000, C525S340000, C525S342000, C525S353000, C525S366000, C525S371000, C525S379000, C525S383000, C525S384000, C525S385000, C525S386000
Reexamination Certificate
active
06197891
ABSTRACT:
FIELD OF THE INVENTION
This invention concerns a process for the polymerization of olefinic-containing monomers, polymers produced by this process, novel anionic initiators for use in the polymerization process and a process for making the anionic initiators.
BACKGROUND OF THE INVENTION
Useful polymeric products are obtained by polymerizing olefinic containing monomers in the presence of an organo-alkali metal initiator and subsequently reacting the resulting polymer, containing an active alkali metal end group or groups, with a reagent which will couple the polymer molecules or replace the alkali metal with more stable reactive end groups.
Monofunctional silyl ether initiators, containing alkali metal end groups useful in effecting such polymerization reactions are disclosed in Great Britain published patent application 2,241,239, published Aug. 28, 1991. These monofunctional silyl ether initiators were demonstrated to be useful in producing polybutadienes having desirable characteristics such as a molecular weight of typically 1,000 to 10,000, 1-4 content of typically 90%, etc.
A co-pending U.S. application Ser. No. 198,914, filed Feb. 18, 1994, discloses a process for the preparation of hydrocarbon solutions of monofunctional ether initiators of the following general structure:
M—Z—O—C—(R
1
R
2
R
3
) (I)
wherein M is defined as an alkali metal, preferably lithium; Z is a branched or straight chain hydrocarbon group which contains 3-25 carbon atoms, optionally containing aryl or substituted aryl groups; and R
1
, R
2
, and R
3
are independently defined as hydrogen, alkyl, substituted alkyl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, aryl or substituted aryl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, and their employment as initiators in the anionic polymerization of olefin containing monomers in an inert, hydrocarbon solvent optionally containing a Lewis base. The process reacts selected omega-protected-1-haloalkyls whose alkyl groups contain 3 to 25 carbon atoms, with lithium metal at a temperature between about 35° C. and about 130° C., preferably at the reflux temperature of an alkane or cycloalkane reaction solvent containing 5 to 10 carbon atoms and mixtures of such solvents.
Anionic polymerizations employing the monofunctional ether initiators are conducted in an inert solvent, preferably a non-polar solvent, optionally containing an ethereal modifier, using an olefinic monomer which is an alkenylsubstituted aromatic hydrocarbon or a 1,3-diene at a temperature of about −30° C. to about +150° C. The polymerization reaction proceeds from initiation to propagation and is finally terminated with appropriate reagents so that the polymer is mono-functionally or di-functionally terminated. The polymers may have a molecular weight range of about 1000 to 10,000 but the molecular weight can be higher. Typically 5 to 50 milli-moles of initiator is used per mole of monomer.
The precursor omega-protected-1-haloalkanes (halides) were prepared from the corresponding haloalcohol by the standard literature methods. For example, 3-(1,1-dimethylethoxy)-1-chloropropane was synthesized by the reaction of 3-chloro-1-propanol with 2-methylpropene according to the method of A. Alexakis, M. Gardette, and S. Colin, Tetrahedron Letters, 29, 1988, 2951. The method of B. Figadere, X. Franck and A. Cave, Tetrahedron Letters, 34, 1993, 5893, which involved the reaction of the appropriate alcohol with 2-methyl-2-butene catalyzed by boron trifluoride etherate was employed for the preparation of the t-amyl ethers. The alkoxy, alkylthio or dialkylamino substituted ethers, for example 6-[3-(methylthio)-1-propyloxy]-1-chlorohexane, were synthesized by reaction of the corresponding substituted alcohol, for instance 3-methylthio-1-propanol, with an alpha-bromo-omega-chloroalkane, for instance 1-bromo-6-chlorohexane, according to the method of J. Almena, F. Foubelo and M. Yus, Tetrahedron, 51, 1995, 11883. The compound 4-(methoxy)-1-chlorobutane, and the higher analogs, were synthesized by the ring opening reaction of tetrahydrofuran with thionyl chloride and methanol, according to the procedure of T. Ferrari and P. Vogel, SYNLETT, 1991, 233. The triphenylmethyl protected compounds, for example 3-(triphenylmethoxy)-1-chloropropane, are prepared by the reaction of the haloalcohol with triphenylmethylchloride, according to the method of S. K. Chaudhary and O. Hernandez, Tetrahedron Letters, 1979, 95.
Monofunctional ether initiators prepared in accord with this earlier process can include, but are not limited to, 3-(1,1-dimethylethoxy)-1-propyllithium, 3-(1,1-dimethylpropoxy)-1-propyllithium, 5-(1,1-dimethylethoxy)-1-pentyllithium, 3-(1,1-dimethylethoxy)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylethoxy)-1-butyllithium, 6-(1,1-dimethylethoxy)-1-hexyllithium, 8-(1,1-dimethylethoxy)-1-octyllithium, 4-(ethoxy)-1-butyllithium, 4-(propyloxy)-1-butyllithium, 4-(1-methylethoxy)-1-butyllithium, 3-(triphenylmethoxy)-2,2-dimethyl-1-propyllithium, 4-(triphenylmethoxy)-1-butyllithium, 3-[3-(dimethylamino)-1-propyloxy]-1-propyllithium, 3-[2-(dimethylamino)-1-ethoxy]-1-propyllithium, 3-[2-(diethylamino)-1-ethoxy]-1-propyllithium, 3-[2-(diisopropyl)amino)-1-ethoxy]-1-propyllithium, 3-[2-(1-piperidino)-1-ethoxy]-1-propyllithium, 3-[2-(1-pyrrolidino)-1-ethoxy]-1-propyllithium, 4-[3-(dimethylamino)-1-propyloxy]-1-butyllithium, 6-[2-(1-piperidino)-1-ethoxy]-1-hexyllithium, 3-[2-(methoxy)-1-ethoxy]-1-propyllithium, 3-[2-(ethoxy)-1-ethoxy]-1-propyllithium, 4-[2-(methoxy)-1-ethoxy]-1-butyllithium, 5-[2-(ethoxy)-1-ethoxy]-1-pentyllithium, 3-[3-(methylthio)-1-propyloxy]-1-propyllithium, 3-[4-(methylthio)-1-butyloxy]-1-propyllithium, 3-(methylthiomethoxy)-1-propyllithium, 6-[3-(methylthio)-1-propyloxy]-1-hexyllithium, 3-[4-(methoxy)-benzyloxy]-1-propyllithium, 3-[4-(1,1-dimethylethoxy)-benzyloxy]-1-propyllithium, 3-[2,4-(dimethoxy)-benzyloxy]-1-propyllithium, 8-[4-(methoxy)-benzyloxy]-1-octyllithium, 4-[4-(methylthio)-benzyloxy]-1-butyllithium, 3-[4-(dimethylamino)-benzyloxy]-1-propyllithium, 6-[4-(dimethylamino)-benzyloxy]-1-hexyllithium, 5-(triphenylmethoxy)-1-pentyllithium, 6-(triphenylmethoxy)-1-hexyllithium, and 8-(triphenylmethoxy)-1-octyllithium. These monofunctional ether initiators have rather limited hydrocarbon solubility.
DETAILED DESCRIPTION OF THE INVENTION
The present process provides monofunctional ether initiators with increased hydrocarbon solubility, a process for the production of these monofunctional ether initiators, an anionic polymerization process for polymerizing olefin containing monomers employing these new initiators and polymers produced by the new anionic polymerization process.
The monofunctional ether initiators of this invention having increased solubility in hydrocarbons are of the formula:
M—Q
n
—Z—O—[A(R
1
R
2
R
3
)] (II)
wherein M is defined as an alkali metal selected from the group consisting of lithium, sodium, and potassium; Q is a hydrocarbyl group derived by the incorporation of one or more conjugated diene hydrocarbons, one or more alkenylsubstituted aromatic hydrocarbons containing 8-25 carbon atoms, or mixtures thereof, into the M—Z linkage; Z is a branched or straight chain hydrocarbon group which contains 3-25 carbon atoms, optionally containing aryl or substituted aryl groups; [A(R
1
R
2
R
3
)] is a protecting group in which A is an element selected from Group IVa of the Periodic Table of Elements, exemplified by carbon and silicon; R
1
, R
2
, and R
3
are independently selected from hydrogen, alkyl, substituted alkyl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, aryl or substituted aryl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, or cycloalkyl and substituted cycloal
Granger Eric John
Kamienski Conrad William
Letchford Robert James
Morrison Robert Charles
Schwindeman James Anthony
Alston & Bird LLP
FMC Corporation
Teskin Fred
LandOfFree
Functionalized chain extended initiators for anionic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Functionalized chain extended initiators for anionic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Functionalized chain extended initiators for anionic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2495710