Functional polymers with carbon-linked functional groups

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C521S031000, C521S032000, C521S033000, C525S340000, C525S343000, C525S366000, C525S374000, C525S375000, C525S376000, C525S383000, C525S385000, C525S386000

Reexamination Certificate

active

06465580

ABSTRACT:

TECHNICAL FIELD
This invention relates to a functional polymer comprising active and stable functional groups, and to a method of preparing the same. More particularly, the present invention relates to a functional polymer that comprises repeat units of the form —CH[Ph-CH
2
CH
2
—X]—CH
2
—, where X is a functional group linked through carbon, and to a method of its preparation.
BACKGROUND ART
Functional polymers are widely used in industry as separation media and as solid-phase reagents, catalysts and protecting groups for analytical or preparative chemical applications and processes [D. C. Sherrington and P. Hodge, “Syntheses and Separations Using Functional Polymers”, John Wiley & Sons, Toronto, 1988]. A functional polymer generally consists of a polymer matrix, in the form of particles, beads or a porous block [C. Viklund, F. Svek, J. M. J. Fréchet and K. Irgum, “Molded porous materials with high flow characteristics for separation or catalysis: control of porous properties during polymerization in bulk solution”, Chem. Mater. y1986 v8 p744-750], that is chemically inert to the conditions of its use, including being insoluble in any solvent it is likely to encounter so that it can be retained in a column or easily recovered from out of a product mixture by filtration or other separation for easy isolation of chemical product and reuse of the functional polymer; and also of functional groups, attached to the polymer matrix, that can bind, transform or otherwise interact with chemical species that are dissolved in a permeating fluid, or that confer other advantageous properties to the functional polymer, such as a higher density for best use in floating bed reactors or for easier and faster separation by precipitation, or better wetting and penetration by a particular solvent. Most often, the polymer matrix is of crosslinked polystyrene, due to the ease of its preparation through suspension or other polymerization of styrene or styrene-like monomer (usually, including divinylbenzene as crosslinking agent), with attendant control of particle size, porosity, swellability, surface area, and other aspects of its architecture affecting eventual use; and its good general mechanical and chemical stabilities, though also with the ability to be controllably decorated with any of a wide variety of functional groups. In ion exchange resins, which are manufactured in large quantities for deionizing water and many other purification processes, these functional groups may consist of sulfonic, carboxylic, phosphinic or phosphonic acids or phosphonic ester acids or their salts, or amines or their salts, or quaternary ammonium or phosphonium hydroxides or other of their salts; recoverable solid resins for general acid catalysis would bear sulfonic or phosphoric strong acid groups; chelating resins that recover toxic or expensive metal ions from wastewater may contain combinations of amino and sulfonate, phosphinate, phosphonate or carboxylate groups, along with hydroxyl, ether, thiol, sulfide, ketone, phosphine, phosphoramidate or other Lewis base groups; certain such functional groups, including those having the form of crown ethers [K. Kimura, in K. Takemoto, K. Inaki and R. M. Ottenbrite “Functional Monomers and Polymers”, Marcel Dekker NY y1987 p349-422], amides [A. Akelah and A. Moet “Functionalized Polymers and Their Applications”, Chapman & Hall NY y1990], or 1,3-diketones [H. Yeh, B. E. Eichinger, N. H. Andersen, ACS Polym. Prepr. y1981 v22 p184] may in particular coordinate with metal ions to activate their negative counterions for phase-transfer catalyzed nucleophilic substitution or other reactions, or may hold platinum or other catalytic heavy metal species so that these are conserved and re-used from one reaction to the next, while others such as cyclic amidines like 1,8-diazabicyclo[5.4.0]undec-7-ene (“DBU”)[M. Tomoi, Y. Kato and H. Kakiuchi, Makromol. Chem. y1984 v185 p2117-2124] are strong though non-nucleophilic bases for organic reactions or anion exchange; halosilyl, haloalkyl, haloacyl, halophosphinyl, halophosphonyl or halosulfonyl functional groups, or anhydride or azlactone functional groups, can covalently bind to other organic molecules so that parts of these are protected while other parts are being chemically modified, the whole later released, such as in solid-phase synthesis of polypeptides, polysaccharides or polynucleotides, or themselves act as agents for catalysis or molecular recognition, as with proteinic enzymes, antibodies or antigens that have been polymer-bound. Phosphorus-containing functional groups can also improve fire resistance in a functional polymer.
While functional polymers may be prepared by polymerization of monomers that already contain the desired functional groups, more commonly they are made by chemically functionalizing or modifying other existing polymer matrices—most commonly, crosslinked polystyrene—as prepared from common monomers through established polymerization recipes that give well-defined and desirable particle and matrix structures and properties. However, existing such modification methods of preparing functional polymers often suffer from disadvantages of hazardous or expensive ingredients or conditions, that result in products that are intrinsically deficient in activity or stability or both [G. D. Darling and J. M. J. Fréchet “Dimethylene spacers in functionalized polystyrenes”, in J. L. Benham and J. F. Kinstle, Eds. “Chemical Reactions on Polymers”, ACS Symp. Ser. v364, American Chemical Society, Wash. D.C., y1988 p24-36]. For example, the chloromethylation route to the most common anion-exchange and chelating polystyrene-based resins uses or generates highly carcinogenic species, and results in benzyl-heteroatom bonds that are unstable to many conditions of eventual use or regeneration; bromination/lithiation, another general route to functional polymers, employs expensive and sensitive organometallic reagents and, like sulfonation, results in aryl-heteroatom functional groups that may be unstable in acidic conditions. Functional polymers containing aliphatic spacer groups of at least two carbons between polystyrene phenyl and functional group heteroatom would not show either type of chemical instability, and moreover, the deeper penetration of their dangling functional groups into a fluid phase permeating the polymer matrix often allows better and faster interactions with soluble species therein [A. Deratani, G. D. Darling, D. Horak and J. M. J. Fréchet “Heterocyclic polymers as catalysts in organic synthesis. Effect of macromolecular design and microenvironment on the catalytic activity of polymer-supported (dialkylamino)pyridine catalysts.” Macromolecules y1987 v20 p767]. Several such spacer-containing functional polymers have been prepared via electrophilic aromatic substitution—either chloromethylation or bromination/lithiation—of aryl nuclei in crosslinked styrene-divinylbenzene copolymer, albeit through tedious multistep syntheses [Darling and Fréchet y1988 ibid].
Instead of on styrenic phenyl, modification reactions can be performed on the vinyl groups of polymeric 1-(vinylphenyl)ethylene repeat units. These vinyl groups may be prepared from formyl, chloromethyl, bromoethyl or 1,2-dibromoethyl functional group precursors [M. J. Farrell, M. Alexis and M. Trecarten, Polymer y1983 v24 p114; Darling and Fréchet y1988 ibid; T. Yamamizu, M. Akiyama and K. Takeda, React. Polym. y1985 v3 p1731], or remain from anionic [Y. Nagasaki, H. Ito, T. Tsuruta, Makromol. Chem. y1968 v187 p23] or even free-radical [M. C. Faber, H. J. van den Berg, G. Challa and U. K. Pandit, React. Polym. y1989 v11 p117] copolymerization of monomer mixtures that include divinylbenzene. Radical copolymerization with divinylbenzene is a particularly simple way to form a polymer that contains such vinyls, that moreover have here the advantage of being site-isolated; indeed, Rohm and Haas supplies a commercial p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Functional polymers with carbon-linked functional groups does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Functional polymers with carbon-linked functional groups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Functional polymers with carbon-linked functional groups will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2946762

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.