Functional genomics using zinc finger proteins

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C435S069100, C536S023100, C536S023400

Reexamination Certificate

active

06777185

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
Not applicable.
FIELD OF THE INVENTION
The present invention provides methods of regulating gene expression using recombinant zinc finger proteins, for functional genomics and target validation applications.
BACKGROUND OF THE INVENTION
Determining the function of a gene of interest is important for identifying potential genomic targets for drug discovery. Genes associated with a particular function or phenotype can then be validated as targets for discovery of therapeutic compounds. Historically, the function of a particular gene has been identified by associating expression of the gene with a specification function of phenotype in a biological system such as a cell or a transgenic animal.
One known method used to validate the function of a gene is to genetically remove the gene from a cell or animal (i.e., create a “knockout”) and determine whether or not a phenotype (i.e., any change, e.g., morphological, functional, etc., observable by an assay) of the cell or animal has changed. This determination depends on whether the cell or organism survives without the gene and is not feasible if the gene is required for survival. Other genes are subject to counteracting mechanisms that are able to adapt to the disappearance of the gene and compensate for its function in other ways. This compensation may be so effective, in fact, that the true function of the deleted gene may go unnoticed. The technical process of creating a “knockout” is laborious and requires extensive sequence information, thus commanding immense monetary and technical resources if undertaken on a genome wide scale.
In another example, antisense methods of gene regulation and methods that rely on targeted ribozymes are highly unpredictable. Another method for experimentally determining the function of a newly discovered gene is to clone its cDNA into an expression vector driven by a strong promoter and measure the physiological consequence of its over-expression in a transfected cell. This method is also labor intensive and does not address the physiological consequences of down-regulation of a target gene. Therefore, simple methods allowing the selective over- and under-expression of uncharacterized genes would be of great utility to the scientific community. Methods that permit the regulation of genes in cell model systems, transgenic animals and transgenic plants would find widespread use in academic laboratories, pharmaceutical companies, genomics companies and in the biotechnology industry.
An additional use of target validation is in the production of in vivo and in vitro assays for drug discovery. Once the gene causing a selected phenotype has been identified, cell lines, transgenic animals and transgenic plants could be engineered to express a useful protein product or repress a harmful one. These model systems are then used, e.g., with high throughput screening methodology, to identify lead therapeutic compounds that regulate expression of the gene of choice, thereby providing a desired phenotype, e.g., treatment of disease.
Methods currently exist in the art, which allow one to alter the expression of a given gene, e.g., using ribozymes, antisense technology, small molecule regulators, over-expression of cDNA clones, and gene-knockouts. As described above, these methods have to date proven to be generally insufficient for many applications and typically have not demonstrated either high target efficacy or high specificity in vivo. For useful experimental results and therapeutic treatments, these characteristics are desired.
Gene expression is normally controlled by sequence specific DNA binding proteins called transcription factors. These bind in the general proximity (although occasionally at great distances) of the point of transcription initiation of a gene and typically include both a DNA binding domain and a regulatory domain. They act to influence the efficiency of formation or function of a transcription initiation complex at the promoter. Transcription factors can act in a positive fashion (transactivation) or in a negative fashion (transrepression). Although transcription factors typically contain a regulatory domain, repression can also be achieved by steric hindrance via a DNA binding domain alone.
Transcription factor function can be constitutive (always “on”) or conditional. Conditional function can be imparted on a transcription factor by a variety of means, but the majority of these regulatory mechanisms depend of the sequestering of the factor in the cytoplasm and the inducible release and subsequent nuclear translocation, DNA binding and transactivation (or repression). Examples of transcription factors that function this way include progesterone receptors, sterol response element binding proteins (SREBPs) and NF-kappa B. There are examples of transcription factors that respond to phosphorylation or small molecule ligands by altering their ability to bind their cognate DNA recognition sequence (Hou et al.,
Science
256:1701 (1994); Gossen & Bujard,
Proc. Natl. Acad. Sci. U.S.A.
89:5547 (1992); Oligino et al.,
Gene Ther.
5:491-496 (1998); Wang et al.,
Gene Ther.
4:432-441 (1997); Neering et al.,
Blood
88:1147-1155 (1996); and Rendahl et al.,
Nat. Biotechnol.
16:757-761 (1998)).
Zinc finger proteins (“ZFPs”) are proteins that can bind to DNA in a sequence-specific manner. Zinc fingers were first identified in the transcription factor TFIIIA from the oocytes of the African clawed toad,
Xenopus laevis
. Zinc finger proteins are widespread in eukaryotic cells. An exemplary motif characterizing one class of these proteins (Cys
2
His
2
class) is -Cys-(X)
2-4
-Cys-(X)
12
-His-(X)
3-5
-His (where X is any amino acid). A single finger domain is about 30 amino acids in length and several structural studies have demonstrated that it contains an alpha helix containing the two invariant histidine residues coordinated through zinc with the two cysteines of a single beta turn. To date, over 10,000 zinc finger sequences have been identified in several thousand known or putative transcription factors. Zinc finger proteins are involved not only in DNA-recognition, but also in RNA binding and protein-protein binding. Current estimates are that this class of molecules will constitute the products of about 2% of all human genes.
The X-ray crystal structure of Zif268, a three-finger domain from a murine transcription factor, has been solved in complex with its cognate DNA-sequence and shows that each finger can be superimposed on the next by a periodic rotation and translation of the finger along the main DNA axis. The structure suggests that each finger interacts independently with DNA over 3 base-pair intervals, with side-chains at positions −1, 2, 3 and 6 on each recognition helix making contacts with respective DNA triplet sub-site. The amino terminus of Zif268 is situated at the 3′ end of its DNA recognition subsite. Recent results have indicated that some zinc fingers can bind to a fourth base in a target segment (Isalan et al.,
Proc. Natl. Acad. Sci. U.S.A.
94:5617-5621 (1997). The fourth base is on the opposite strand from the other three bases recognized by zinc finger and complementary to the base immediately 3′ of the three base subsite.
The structure of the Zif268-DNA complex also suggested that the DNA sequence specificity of a zinc finger protein might be altered by making amino acid substitutions at the four helix positions (−1, 2, 3 and 6) on a zinc finger recognition helix. Phage display experiments using zinc finger combinatorial libraries to test this observation were published in a series of papers in 1994 (Rebar et al., Science 263:671-673 (1994); Jamieson et al.,
Biochemistry
33:5689-5695 (1994); Choo et al.,
Proc. Natl. Acad. Sci. U.S.A.
91:11163-11167 (1994)). Combinatorial libraries were constructed with randomized side-chains in either the first or middle finger of Zif268 and then isolated with an altered Zif268 binding site in which the appropriate DNA sub-site was replaced by

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Functional genomics using zinc finger proteins does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Functional genomics using zinc finger proteins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Functional genomics using zinc finger proteins will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3305544

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.