Functional film having functional layer and article provided...

Plastic and nonmetallic article shaping or treating: processes – Forming articles by uniting randomly associated particles – Stratified or layered articles

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S113000, C264S123000

Reexamination Certificate

active

06797210

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a functional film for transfer having a functional layer comprising a compressed layer of functional fine particles on a support, an article provided with the functional layer, and a method for producing the article provided with the functional layer.
The present invention relates to a functional film for transfer having a functional layer comprising a compressed layer of functional fine particles on a support subjected to non-glare treatment, and more particularly to a functional film for transfer capable of providing a functional layer comprising a compressed layer of functional fine particles to an object article and applying non-glare treatment to the object article. Also, the present invention relates to an article provided with the functional layer and subjected to the non-glare treatment, and a method for producing the same.
In the present invention, the functional film includes both a functional film and a functional sheet. In addition, the functional film of the present invention includes a functional film in which a support is a metal.
The functional layer is a layer having a function, and the function means an action accomplished through physical and/or chemical phenomena. The functional layer includes layers having various functions, such as a conductive layer, an ultraviolet shielding layer, an infrared shielding layer, a magnetic layer, a ferromagnetic layer, a dielectric layer, a ferroelectric layer, an electrochromic layer, an electroluminescent layer, an insulating layer, a light-absorbing layer, a light selecting absorbing layer, a reflecting layer, a reflection preventing layer, a catalyst layer, a photocatalyst layer and others.
Particularly, the present invention relates to a functional film for transfer having a transparent conductive layer. In particular, the present invention relates to a functional film for transfer capable of being used for articles, represented by various displays, in which non-glare treatment is required, and more specifically to a functional film for transfer capable of providing a transparent conductive layer to an object article and applying non-glare treatment to the object article. The transparent conductive layer can be used as a transparent electrode such as an electroluminescence panel electrode, an electrochromic element electrode, a liquid crystal electrode, a transparent plane heater, or a touch panel, and can be also used as a transparent electromagnetic-wave shielding layer.
2. Disclosure of the Related Art
Hitherto, functional layers made of various functional materials are produced by the physical vapor deposition method (PVD) such as vacuum vapor deposition, laser ablation, sputtering, or ion plating, or by the chemical vapor deposition method (CVD) such as heat CVD, light CVD, or plasma CVD. These generally require a large-scale apparatus, and among these, some are not suited for forming a layer of large area.
Also, a process is known in which a layer is formed by application using the sol-gel method. The sol-gel method is suited for forming a layer of large area, but in most cases, inorganic materials must be sintered at a high temperature after the application.
For example, with respect to a transparent conductive layer, the following description can be made. At present, the transparent conductive layer is produced mainly by the sputtering method. There are various modes for the sputtering method, for example, a method of forming a layer by allowing inert gas ions, which are generated by direct current or high-frequency discharge, to be accelerated to hit the surface of a target in vacuum so as to strike out atoms constituting the target from the surface for deposition on the substrate surface.
The sputtering method is excellent in that a conductive layer having a low surface electric resistance can be formed even if it has a large area to some extent. However, it has a disadvantage that the apparatus is large, and the layer forming speed is slow. If the conductive layer is to have a still larger area from now on, the apparatus will be further enlarged. This raises a technical problem such that the controlling precision must be heightened and, from another point of view, raises a problem of increase in the production cost. Further, although the number of targets is increased to raise the speed in order to compensate for the slowness of the layer forming speed, this also is a factor that enlarges the apparatus, thereby raising a problem.
An attempt is made to produce the transparent conductive layer by the application method. In a conventional application method, a conductive paint having conductive fine particles dispersed in a binder solution is applied onto a substrate, dried, and hardened to form the conductive layer. The application method has advantages in that a conductive layer having a large area can be easily formed, that the apparatus is simple and has a high productivity, and that the conductive layer can be produced at a lower cost than by the sputtering method. In the application method, an electric path is formed by contact of the conductive fine particles with each other, whereby the electric conductivity is exhibited. However, the conductive layer produced by the conventional application method has an insufficient contact, and the obtained conductive layer has a high electric resistance value (i.e. is inferior in conductivity), thereby limiting its usage.
As the production of the transparent conductive layer by the conventional application method, Japanese Laid-open Patent Publication No. 9-109259 (1997) discloses a production method comprising the first step of applying a paint comprising conductive powders and binder resins onto a plastic film for transfer and drying it to form a conductive layer, the second step of pressing (5 to 100 kg/cm
2
) the conductive layer surface on a smooth surface and heating (70 to 180° C.), and the third step of laminating this conductive layer on a plastic film or sheet and heat-press-bonding it.
In this method, a large amount of binder resins is used (100 to 500 parts by weight of conductive powders with respect to 100 parts by weight of the binder in the case of inorganic conductive powders; or 0.1 to 30 parts by weight of conductive powders with respect to 100 parts by weight of the binder in the case of organic conductive powders), so that a transparent conductive layer having a low electric resistance value cannot be obtained.
For example, Japanese Laid-open Patent Publication No. 8-199096 (1996) discloses a method in which a conductive layer forming paint comprising tin-doped indium oxide (ITO) powders, a solvent, a coupling agent and an organic or inorganic acid salt of metal, and not containing a binder is applied onto a glass plate and calcined at a temperature of 300° C. or higher. In this method, since the binder is not used, the conductive layer has a low electric resistance value. However, since the calcining step at a temperature of 300° C. or higher must be carried out, it is difficult to form the conductive layer on a support such as a resin film. In other words, the resin film will be melted, carbonized, or burnt by the high temperature. Although it depends on a kind of the resin film, a temperature of 130° C. may be a limit in the case of polyethylene terephthalate (PET) film, for example.
By the application method, in the case that the support is one having flexibility such as a film, a functional layer having a large area can be easily formed. However, in the case that the support is one having poor flexibility such as a plate material, the application is difficult as compared with the case of the flexible support, and particularly it is difficult to control a layer thickness for uniformity.
Namely, in the case of the flexible film, the application can be performed by fixing a coater section and moving the film, thereby easily controlling a layer thickness. On the other hand, in the case of the plate material having poor flexibility, although the application

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Functional film having functional layer and article provided... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Functional film having functional layer and article provided..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Functional film having functional layer and article provided... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3258960

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.