Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase
Patent
1997-02-26
1998-02-10
Hendricks, Keith D.
Chemistry: molecular biology and microbiology
Enzyme , proenzyme; compositions thereof; process for...
Hydrolase
435195, 435197, C12N 916, C12N 914
Patent
active
057168202
ABSTRACT:
Methods for identifying organisms capable of degrading fumonisin. Fumonisin can be incorporated into culture medium for selection of organisms resistant to fumonisin. Using this method, several organisms have been identified. These organisms can be used to isolate the enzyme and the gene responsible for conferring fumonisin-resistance. The gene can be cloned and inserted into a suitable expression vector so that the protein can be further characterized. Additionally, the DNA encoding for fumonisin-resistance can be used to transform plant cells normally susceptible to Fusarium infection. Plants can be regenerated from the transformed plant cells. In this way, a transgenic plant can be produced with the capability of degrading fumonisin.
REFERENCES:
patent: 4988586 (1991-01-01), Toyoda et al.
patent: 5178863 (1993-01-01), Toyoda et al.
patent: 5262306 (1993-11-01), Robeson et al.
Abbas, et al. (1992) Phytotoxicity of Fumonisin B.sub.1 on Weed and Crop Species.sup.1, Weed Technology, vol. 6:548-552.
Blackwell, et al. (1994) Production of Carbon 14-Labeled Fumonisin in Liquid Culture, Journal of AOAC International, vol. 77, No. 2, pp. 506-511.
Gelderblom, et al. (1993) Structure-Activity Relationships of Fumonisins in Short-Term Carcinogenesis and Cytotoxicity Assays, Food Chem. Toxic., vol. 31, No. 6, pp. 407-414.
Van Asch, et al. (1992) Phytotoxicity of Fumoninsin B.sub.1, Moniliformin, and T-2 Toxin to Corn Callus Cultures, Phytopathology, vol. 82, No. 11, pp. 1330-1332.
Vesonder, et al. (1993) Comparison of the Cytotoxicities of Fusarium Metabolites and Alternaria Metabolite AAL-Toxin to Cultured Mammalian Cell Lines, Arch. Environ. Contam. Toxicol., vol. 24, pp. 473-477.
Tanaka, et al. (1993) Structure-Dependent Phytotoxicity of Fumonisins and Related Compounds in a Duckweed Bioassay, Phytochemistry, vol. 33, No. 4, pp. 779-785.
He P., et al. (1992) Microbial Transformation of Deoxynivalenol (Vomitoxin), Applied and Environmental Microbiology, vol. 58, No. 12, pp. 3857-3863.
Kneusel, et al. (1994) Molecular Characterization and Cloning of an Esterase Which Inactivates the Macrolide Toxin Brefeldin A*, The Journal of Biological Chemistry, vol. 269, No. 5, pp. 3449-3456.
Miller, J. D., et al. (1986) Degradation of deoxynivalenol by suspension cultures of the fusarium head blight resistant wheat cultivar Frontana, Canadian Journal of Plant Pathology, vol. 8, pp. 147-150.
Ueno, et al. (1983) Metabolism of T-2 Toxin in Curtobacterium sp. Strain 114-2, Applied and Environmental Microbiology, vol. 46, pp. 120-127.
Utsumi, et al. (1991) Molecular Cloning and Characterization of the Fusaric Acid-resistance Gene from Pseudomonas cepacia, Agric. Biol. Chem., vol. 55, pp. 1913-1918.
Vesonder, et al. (1992) Comparative Phytotoxicity of the Fumonisins, AAL-Toxin and Yeast Sphingolipids in Lemna minor L. (Duckweed), Arch. Environ. Contam. Toxicol., vol. 23, pp. 464-467.
Marth, et al. (1978) Update on molds: degradation of aflatoxin, J. Food Technol., 33:81-87.
Kneusel, et al. (1990) Detoxification of the macrolide toxin brefeldin A by Bacillus subtillis, FEBS Letters, vol. 275, No. 1,2, pp. 107-110.
Toyoda, et al. (1988) Detoxification of Fusaric Acid by a Fusaric Acid-Resistant Mutant of Pseudomonas solanacearum and its Applicaation to Biolgoical Control of Fusarium Wilt of Tomato, Phytopathology, vol. 78, No. 10, p. 1307-1311.
Bunz et al. (1993) Purification of two isosfunctional hydrolases (EC 2.7.1.8) in the degradative pathway for dibenzofuran in Sphingomonas sp. strain RW1, Biodegradation, 4:171-178.
Duvick et al. (1992) Purification and Characterization of a Novel Antimicrobial Peptide from Maize (Zea mays L.) Kemels*, The Journal of Biological Chemistry, vol. 267, No. 26, pp. 18814-18820.
Duvick Jon
Rood Tracy
Wang Xun
Hendricks Keith D.
Pioneer Hi-Bred International , Inc.
LandOfFree
Fumonisin detoxification enzymes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fumonisin detoxification enzymes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fumonisin detoxification enzymes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2076458