Electrical computers and digital processing systems: multicomput – Computer-to-computer data routing – Least weight routing
Reexamination Certificate
1999-05-27
2003-07-29
Courtenay, III, St. John (Department: 2126)
Electrical computers and digital processing systems: multicomput
Computer-to-computer data routing
Least weight routing
Reexamination Certificate
active
06601114
ABSTRACT:
FIELD OF THE INVENTION
This invention generally relates to computer programming languages, and more particularly to computer programming languages with dynamic linking that verify instructions while supporting lazy loading.
DESCRIPTION OF RELATED ART
In general, computer programs are written as source code statements in a high level language which is easy for a human being to understand. As the computer programs are actually executed, a computer responds to machine code, which consists of instructions comprised of binary signals that directly control the operation of a central processing unit (CPU). It is well known in the art to use a special program called a compiler to read the source code and to convert its statements into the machine code instructions of the specific CPU. The machine code instructions thus produced are platform dependent, that is, different computer devices have different CPUs with different instruction sets indicated by different machine codes.
It is also known in the art to construct more powerful programs by combining several simpler programs. This combination can be made by copying segments of source code together before compiling and then compiling the combined source. When a segment of source code statements is frequently used without changes it is often preferable to compile it once, by itself, to produce a module, and to combine the module with other modules only when that functionality is actually needed. This combining of modules after compilation is called linking. When the decision on which modules to combine depends on run time conditions and the combination of the modules happens at run time, just before execution, the linking is called dynamic linking.
An advantage of linking is that programs can be developed a module at a time and productivity can be enhanced as different developers work, possibly at different sites, simultaneously on separate modules.
An advantage of linking performed at run time, that is, dynamic linking when the program is being executed, is that modules not used during execution need not be linked, thus reducing the number of operations that must be executed and likely reducing the size of the executing code. In general, modules have to be loaded, that is identified and brought into memory, before being linked. The deferred linking of modules until the module is needed allows a deferral in loading those modules as well, which is called lazy loading.
It is prudent, when assembling several modules that may have been written independently, to check both that each module performs properly within its own four corners, i.e., with intra-module checks, and also that the modules work properly together, i.e. with inter-module checks. By analogy with the terminology used by the designers of the JAVA™ programming language, this post compilation module checking can be called verification.
An example of a computer architecture that benefits from dynamic linking is a virtual machine (VM) such as the JAVA™ virtual machine (JVM) of Sun Microsystems, Inc., which is an abstract computer architecture that can be implemented in hardware or software. Either implementation is intended to be included in the following descriptions of a VM.
A VM can provide platform independence in the following manner. Statements expressed in a high level computing language, such as the JAVA™ programming language, are compiled into VM instructions that are system independent. The VM instructions are to the VM what machine code is to a central processing unit (CPU). The VM instructions can then be transferred from one machine to another. Each different processor needs its own implementation of a VM. The VM runs the VM instructions by translating or interpreting the VM instructions one or more instructions at a time. In many implementations, the VM implementation is a program running on the CPU of a particular computer, but the VM instructions may also be used as the native instruction set of a particular processor or device. In the latter case, the VM is an “actual” machine. Other operations can also be performed by the VM including dynamic linking and verification.
The process of programming using such a VM then has two time epochs associated with it; “compile time” refers to the steps which convert the high level language into the VM instructions, and “run time” refers to the steps which in a JAVA™ VM environment, interpret instructions to execute the module. Between compile time and run time, the modules of instructions compiled from statements can reside dormant for extended, arbitrary periods of time, or can be transferred from one storage device to another, including being transferred across a network.
The problems encountered in trying to implement dynamic linking with verification and with or without lazy loading can be illustrated for the example of the JAVA™ virtual machine. The JVM is a particular VM for the object oriented JAVA™ high level programming language that is designed to perform dynamic linking, verification and lazy loading as described for the conventional JVM in The JAVA™
Virtual Machine Specification
, by T. Lindholm and Frank Yellin, Addison-Wesley, Menlo Park, Calif., 1997.
Object oriented programming techniques such as those used by the JAVA™ platform are widely used. The basic unit of object oriented programs is the object which has methods (procedures) and fields (data), herein called members. Objects that share members are grouped into classes. A class defines the shared members of the objects in the class. Each object then is a particular instance of the class to which it belongs. In practice, a class is often used as a template to create multiple objects (multiple instances) with similar features.
One property of classes is encapsulation, which describes the property that the actual implementation of the members within the class are hidden from an outside user, and other classes, except as exposed by an interface. This makes classes suitable for distributed development, for example by different developers at different sites on a network. A complete program can be formed by assembling the classes that are needed, linking them together, and executing the resulting program.
Classes enjoy the property of inheritance. Inheritance is a mechanism that enables one class to inherit all of the members of another class. The class that inherits from another class is called a subclass; the class that provides the attributes is the superclass. Symbolically, this can be written as subclass<=superclass, or superclass=>subclass. The subclass can extend the capabilities of the superclass by adding additional members. The subclass can override an attribute of the superclass by providing a substitute member with the same name and type.
The JVM operates on a particular binary format for the compiled classes—the class file format. A class file contains JVM instructions and a symbol table, as well as other ancillary information. For the sake of security, the JVM imposes strong format and structural constraints on the instructions in a class file. In particular example, JVM instructions are type specific, intended to operate on operands that are of a given type as explained below. Similar constraints could be imposed by any VM. Any language with functionality that can be expressed in terms of a valid class file can be hosted by the JVM. The class file is designed to handle object oriented structures that can represent programs written in the JAVA™ programming language, but may also support several other programming languages.
In the class file, a variable is a storage location that has associated a type, sometimes called its compile-time type, that is either a primitive type or a reference type. The reference types are pointers to objects or a special null reference which refers to no object. The type of a subclass is said to be a subtype of its superclass. The primitive types for the WM include boolean (taking the truth values true and false), char (code for a Unicode character), byte (signed eight bits of 0 or 1), short (signed
Bracha Gilad
Liang Sheng
Lindholm Timothy G.
LandOfFree
Fully lazy linking with module-by-module verification does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fully lazy linking with module-by-module verification, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fully lazy linking with module-by-module verification will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3065777