Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
1999-09-28
2001-08-07
Getzow, Scott M. (Department: 3737)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
Reexamination Certificate
active
06272382
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to implantable devices, and more particularly, to a fully implantable device or system for stimulating or sensing living tissue wherein the implantable device may include a rechargeable battery or other replenishable power source. More particularly, the present invention relates to a fully implantable cochlear implant system (FICIS) that allows profoundly deaf persons to hear sounds without the need for wearing or carrying external (non-implanted) hearing devices or components. A key feature of the invention relates to partitioning the circuit functions within the FICIS in separate modules that facilitate upgrading circuit functions, adapting the system to a range of head sizes and shapes, and/or replacing, through minimal invasive surgery, the battery or power source used within the FICIS. Another feature of the invention relates to a FICIS that may be operated with conventional external (non-implanted) components of a cochlear stimulation system, e.g., with an external speech processor or an external battery charger, when needed or desired.
BACKGROUND OF THE INVENTION
Presently available implantable stimulation devices, such as a cochlear implant device or a neural stimulator, typically have an implanted unit, an external ac coil, and an external control unit and power source. The external control unit and power source includes a suitable control processor and other circuitry that generates and sends the appropriate command and power signals to the implanted unit to enable it to carry out its intended function. The eternal control unit and power source is powered by a battery that supplies electrical power through the ac coil to the implanted unit via inductive coupling for providing power for any necessary signal processing and control circuitry and for electrically stimulating select nerves or muscles. Efficient power transmission through a patient's skin from the external unit to the implanted unit via inductive coupling requires constant close alignment between the two units.
Representative prior art cochlear implant systems are disclosed, e.g., in U.S. Pat. Nos. 4,532,930; 4,592,359; 4,947,844 and 5,776,172, all of which are incorporated herein by reference.
Disadvantageously, each of the known prior art cochlear stimulation systems requires the use of an external power source and speech processing system, coupled to the implanted stimulation device. For many patients, achieving and maintaining the required coupling between the external components and the implanted component can be troublesome, inconvenient, and unsightly. Thus, there exists a need and desire for a small, lightweight fully implantable device or system that does not require an external unit in order to be fully functional, that does not need constant external power, and that includes a long-lasting internal battery that may be recharged, when necessary, within a relatively short time period.
Moreover, even if a rechargeable battery were available for use within an implantable cochlear stimulation system, such rechargeable battery must not significantly alter the size of the existing implantable cochlear stimulator. This is because the curvature and thickness of the skull is such that there is only a limited amount of space wherein a surgeon may form a pocket wherein a cochlear stimulator may be implanted. This is particularly an acute problem for young children, where the thickness of the skull is relatively thin and the curvature of the skull is greater than for an adult. Thus, there is a need for a fully implantable cochlear implant system that is adaptable and lends itself for implantation within a range of head sizes and shapes.
Additionally, even where a rechargeable battery is employed within a fully implantable cochlear implant system, which fully implantable system includes an implantable speech processor and microphone, it may be necessary or desirable, from time to time, to replace the battery and/or to upgrade the speech processor hardware. Because implantation of the cochlear implant system, including insertion of the delicate electrode array into the cochlear of the patient, represents major surgery, which major surgery would hopefully only need to be performed once in a patient's lifetime, it is seen that there is also a need for a fully implantable cochlear implant system wherein the battery and/or speech processor may be replaced or upgraded from time to time through minimal invasive surgery, while leaving the implantable cochlear stimulator and delicate cochlear electrode array intact for use with the replaced battery and/or upgraded speech processor.
Further, should the internal battery or speech processor within the implant system malfunction, or should the user desire not to use the internal battery or speech processor for certain time periods, there exists a need to be able to power and operate at least the stimulator portion of the implant system from an external power source so that the implant system can continue to operate and provide its intended cochlear-stimulation function until such time as a new battery and/or upgraded speech processor can be safely implanted, or for as long as desired. This affords the patient the flexibility to select when additional implant surgery, if any, is to be performed, without having to shut down operation of the existing implant system. That is, the existing implant system may thus continue to operate with the assistance of an external power boost and/or external speech processor, for as long as necessary.
SUMMARY OF THE INVENTION
The present invention addresses the above and other needs by providing a fully implantable cochlear implant system (FICIS) comprising various configurations of at least three main modules, each of which is summarized in more detail below. The three main modules include: (1) a small implantable cochlear stimulator (ICS) module, with permanently attached cochlear electrode array; (2) an implanted speech processor (ISP) module, with integrated microphone and rechargeable battery; and (3) an external module. In one embodiment, the external module may comprise an external speech processor (ESP) module. In another embodiment, the external module may comprise an external battery charger (EBC) module.
In accordance with one aspect of the invention, the small implantable cochlear stimulator (ICS) module includes the same basic cochlear-stimulation circuitry used in existing implantable cochlear stimulators, e.g., of the type disclosed in U.S. Pat. No. 5,776,172, including a permanently attached cochlear electrode array. Such circuitry is housed within a small hermetically sealed case, preferably a titanium capsule. An RF coil wraps around the exterior perimeter of the case. This coil is typically embedded within epoxy molding and connects with the circuitry inside of the case through two feed-through terminals. A two-conductor lead may, in some embodiments, also be connected in parallel with the RF coil. When used, such two-conductor lead, which may also be referred to herein as a “pigtail lead”, terminates at its distal end in a plug-type jack suitable for detachable insertion into a mating connector. One side of the ICS case includes a detent, or cavity, in which a removable magnet may be housed.
In accordance with another aspect of the invention, the implantable speech processor (ISP) module is also housed within a small, hermetically sealed case. The case of the ISP module is preferably a rounded disk shape, having two internal compartments: an electronic circuitry compartment and a battery compartment. The electronic circuitry compartment houses the speech processor, microphone, battery-charging circuitry, and power transmission circuitry, The battery compartment houses a rechargeable battery. A connector assembly, housing a two-conductor connector suitable for receiving the jack from the pigtail or other lead, is formed along one segment of the perimeter edge of the housing. Suitable feed-through terminals electrically connect the two conductors of the connec
Faltys Michael A.
Kuzma Janusz A.
Lenarz Thomas H. R.
Mann Alfred E.
Advanced Bionics Corporation
Getzow Scott M.
Gold Bryant R.
LandOfFree
Fully implantable cochlear implant system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fully implantable cochlear implant system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fully implantable cochlear implant system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2467540