Fully automatic rapid microscope slide scanner

Image analysis – Applications – Biomedical applications

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S128000

Reexamination Certificate

active

06711283

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of optical microscopy and pertains more specifically to a fully automatic rapid microscope slide scanner.
2. Discussion of the Prior Art
One of the inherent limitations of optical microscopy is the tradeoff between the field of view, the portion of the sample that can be viewed through the eyepieces of a microscope, and the magnification at which the sample can be viewed. While higher magnification microscope objective lenses with higher numerical apertures (NA) provide the microscopist with an enlarged and often higher resolution image, the field of view decreases dramatically with increases in magnification, in proportion to the square of the magnification. Even at very low magnifications such as 1.25 times (1.25×), only a small area of a typical microscope slide can be viewed through the binoculars of a conventional microscope. The field of view limitation of optical microscopy requires that the microscopist manually scan a slide at low magnification to obtain an overall view of the sample or specimen. When an area of interest appears in one of the lower magnification fields of view, the microscopist manually selects a higher magnification objective lens to obtain an enlarged higher resolution view of a proportionately smaller area of the specimen. For samples such as histological specimens that are viewed by a pathologist, it is typical for the pathologist to frequently switch back and forth between a lower magnification objective lens with a larger field of view, for purposes of orienting himself or herself with respect to the specimen, and one or more higher magnification, smaller field of view objective lenses for purposes of viewing the sample in greater detail.
One approach to overcome the optical microscopy limitation of simultaneously achieving both a large field of view, and high magnification, is to capture multiple individual digital images from contiguous fields of view, thereby creating a large field of view image. A scanning system is used to move the sample, while a rectangular optical sensor such as an area scan charge-coupled device (CCD) camera captures an image of each field of view at the desired magnification. The process of assembling these smaller fields of view (hereinafter “image tiles”) into one coherent image is called image tiling. Early image tiling systems, such as the system discussed in U.S. Pat. No. 4,760,385 (Jannson et al.) were based on creating a contiguous high resolution tiled image from approximately thirty-six individual video frame image tiles captured in a region of the sample that was previously and interactively selected by an operator. Similar but more sophisticated image tiling system have more recently become available. One such system is sold by Bacus Laboratories, Inc., Downers Grove, Ill., under the name Bacus Laboratories Inc., Slide Scanner (hereinafter “BLISS”). Elements of the BLISS system are described in Patent Cooperation Treaty publications WO 98/39728 and WO 98/44446.
The BLISS system is designed primarily for the anatomic pathologist who has a need to combine the anatomic orientation of a histological specimen that is obtained at very low magnification, together with several high magnification views of areas of the specimen that have been interactively selected by the pathologist from the low magnification tiled image, also referred to as a macro image. The BLISS system enables the pathologist to quickly flip back and forth between selected high resolution micro images of selected areas captured at 20× or 40×, and a low resolution macro image captured at 1.25×, emulating in some sense the pathologist's manual use of a conventional microscope. Alternatively, the BLISS system user interface provides separate split screens on a display monitor whereby the pathologist is shown an overall macro view and a marker showing where the current higher magnification view is located. A tiled image is constructed by assembling several adjacent, original microscope views at a first magnification to obtain an overall macro view of the specimen, together with several adjacent original microscope views at a higher magnification to create a combined data structure. The data structure is obtained by digitally scanning and storing the low magnification image tiles with their mapping coordinates and likewise, digitally scanning and storing higher magnification image tiles with their mapping coordinates. Furthermore, a pathologist may interactively select only those diagnostically significant areas of the specimen for digital scanning and storing to reduce significantly the number of image pixels stored at high resolution. The data structure, akin to a virtual microscope slide, may then be transferred to a remote viewer over a network such as the Internet. The remote user is thus provided with a series of abutted, tiled images, with each image tile being substantially equal to one small optical field of view at each of two different optical magnifications.
The BLISS system is integrated around a computer-controlled, automated microscope such as the Axioplan-2 microscope system sold by Carl Zeiss, Inc., Thornwood, N.Y. This type of high-end microscope has capabilities for computer-control of several subsystems, including the illumination subsystem, the focusing subsystem, the microscope objective lens subsystem, the filtering subsystem, as well as multiple field and condenser diaphragms or optical stops which may be used to achieve optimum Koehler illumination. Essentially, all moveable elements of the microscope can be controlled from the computer; and in principle, from a remote location via the Internet. Positions for all diaphragms and other settings such as focus and illumination level are stored by the computer, enabling microscope objective lenses to be changed without manual intervention. The BLISS system is also equipped with a computer controlled two-axis (x/y for left/right/up/down motion) translation stage that achieves 0.1 micrometer positioning accuracy using position encoders and closed-loop feedback control to provide superior positioning performance. A CCD camera with 752 by 480 pixels, and an image frame grabber are also integrated into the BLISS system.
Because it is based on image tiling, the BLISS system suffers from several known disadvantages of the image tiling approach. For example, a first disadvantage of the BLISS system is that it takes a long time, typically twenty minutes or longer to acquire the tiled data structures. These time estimates are without consideration for any additional delays that may be incurred during manual intervention, for example, prior to acquiring high magnification tiled images from selected areas of the low magnification macro image. Tiling involves moving a slide on a motorized stage, in discrete steps equal to the width of a single field of view, and with respect to a stationary area scan camera such as the CCD camera used by the BLISS system. An image tile is acquired at every step. Individual images are then tiled together to create a larger seamless image of the area of interest. Image tiling is relatively slow because of the need to minimize any significant relative motion between the sample and the camera while the image is captured. A major cause of relative motion is the settling time of the mechanical positioning stage after issuing sequential stop and go commands. To acquire images without unacceptable smearing requires waiting until the stage has settled, ideally to within less than one pixel. For example, at a 40× magnification, the width of a single image tile captured by a one-half inch format CCD camera corresponds to 160 micrometers of the sample. At this magnification, each individual pixel in a 752-pixel wide CCD camera subtends approximately 0.2 micrometers of the sample. A single tiling step thus requires a relatively large 160 micrometer movement, with associated acceleration and deceleration of the mechanical stage. In or

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fully automatic rapid microscope slide scanner does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fully automatic rapid microscope slide scanner, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fully automatic rapid microscope slide scanner will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3257447

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.