Fully automatic and energy-efficient deionizer

Electricity: electrical systems and devices – Electrolytic systems or devices – Liquid electrolytic capacitor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S528000, C361S532000

Reexamination Certificate

active

06795298

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of Invention
This invention relates to an energy management and other automatic control systems employed in a deionizer system that can remove charged species from liquids automatically and continuously with recovery of the process energy. More specifically, this invention relates to ion removal systems using capacitive deionization (CDI) on a number of flow-through capacitors (FTCs) in conjunction with supercapacitors, ultracapacitors, or electric double layer capacitors as the energy-storage device for storing the electrical energy that is reclaimed during the regeneration of FTCs.
2. Description of Related Art
There are numerous pollutants of inorganic, organic, or biological nature in the contaminated liquids and waters. Many methodologies and techniques can be used to decontaminate the impure fluids, nevertheless, none of the methods is universal. Among the pollutants, charged species or ions are probably the most frequently occurring source of contamination. This is due to that the contaminants often dissolve as ions, or they are dissociated or hydrolyzed into ions in the liquids. In either case, the contaminants are described as total dissolved solids (TDS) measured in ppm (parts per million). It requires a special treatment other than a simple filtration to reduce the TDS to acceptable levels for use or discharge. No matter what method is adopted, it should fulfill the following requirements: 1) low cost, 2) high efficiency, 3) no secondary pollution, 4) robust, and 5) energy efficient, for a method to become a cutting-edge technique on purifying liquids.
Ion-exchange and reverse osmosis (RO) are presently two popular techniques utilized for the reduction of TDS. Before applications, ion-exchange resins must be pre-conditioned in chemicals such as strong acids or bases followed by rinsing with copious de-ionized water. Strong chemicals and high-quality water are also used to regenerate the resins. Regeneration of ion-exchange resins can only be repeated in a limited number of cycles as the resins are vulnerable to degradations. Therefore, ion-exchange method is wasteful in terms of consuming chemicals and water, and the process generates secondary pollutions during precondition and regeneration of the resins. Opposite to the natural migration of solvent in osmosis, pure solvent is transferred from the high concentration side to the dilute side through fine pores of RO membranes in RO operation. To counteract the osmotic pressure, which is existent in all solutions and increases with the concentration of solutions, RO requires the application of pressures on the RO membranes for extracting the pure solvent from solutions. Therefore, the process energy of RO is high, which is also aggravated by most liquid is not recovered, and pollutants are left behind making the original liquids more polluted. As the pores of RO membranes are so fine, for example, 0.5 &mgr;m, that they are prone to fouling, as a consequence, they rely on costly pre-treating setups for protection. Regeneration of the RO membranes is also wasteful by consuming chemicals and pure solvents without mentioning the generation of secondary pollution.
Since TDS is associated with charged species, electro-technology, especially capacitive deionization (CDI) is a more sensible method than ion exchange and RO on reducing the ionic wastes. CDI utilizes the configuration of capacitor, or a flow-through capacitor (FTC) to be specific, wherein an electrostatic field is built with the application of low DC voltages to the electrodes for adsorbing ions as the ion-containing liquids flow through the electric field. Electricity is used to modulate the removal of ions, or purification of liquids, containing many adjustable parameters that impart CDI considerable maneuver-abilities.
There are many CDI and FTC works granted in the US patent publications, some typical examples can be found in U.S. Pat. Nos. 3,515,664, 3,658,674, 5,425,858, 5,514,269, 5,766,442, 6,022,436, 6,325,907, 6,346,187, 6,410,428, and 6,413,409. They are all incorporated herein by reference. Though various fabrication methods of electrodes and electrode modules, as well as miscellaneous patterns of liquid-flow, are disclosed in the prior art, they are generally lack of an implementing methodology to become commercially viable on treating massive liquids. One of the miscomprehended arrangements of conducting CDI in the prior art is that the fundamental properties of capacitors, for example, fast charging and fast discharging, are overlooked. In essence, the adsorption of ions on the electrodes of CDI module is the same process as the charging of capacitors, while desorption of ions from the CDI electrodes is equivalent to the discharging of capacitors. As the charging and discharging of capacitor normally take place in a matter of seconds, as well as repeat in numerous cycles, the ion-adsorption and ion-desorption of CDI technique should be conducted swiftly without unduly delay. Furthermore, energy is harvested at capacitor discharging because that is the reason that energy is invested at charging. Thence, energy can be reclaimed as a by-product at the regeneration of the CDI electrodes. Unlike ion-exchange and RO, no chemicals and pure solvents are consumed, nor secondary pollution is generated during the regeneration of CDI electrodes. It is due to that low process energy is used for deionization, energy is recovered at regeneration, and the foregoing processes are rapidly completed that transforms the CDI technique into a method of low cost and high productivity for environmental applications.
SUMMARY OF INVENTION
The present invention provides an implementing method of automatic CDI for commercially producing fresh water via desalination or recycling waste waters, for liquid waste reduction, and for other high value-added applications.
Both ion adsorption on the electrodes of CDI modules and regeneration of the CDI electrodes are fundamental physical processes in the nature. While the surface adsorption is due to electrostatic attraction, the electrode regeneration occurs by means of static-charge dissipation, just like the charging and discharging of capacitors, the two processes of CDI will respond promptly and reversibly to the external actuations. It is the intent of the present invention to devise a fully automatic system utilizing the foregoing physical processes for producing fresh water, pure solvents, and useful resources with a high energy-efficiency. In accordance with the present invention, one object is to use an economical material as the active adsorbent of ions. First of all, the material should be adsorptive, conductive and inert in adverse conditions such as strong acids, strong bases, strong oxidants, and organic solvents. Among many choices, activated carbons (ACs) are one ideal group for CDI applications. Unless added benefits to justify the extra efforts put on preparing extraordinary carbonaceous materials, otherwise, an inexpensive and commercially available AC is good enough for some CDI applications. Using conventional means, for example, roller coating, and with the assistance of a binder, powder of an ordinary activated carbon can be attached to a metallic support forming the electrodes of CDI.
Another object of the invention is to construct the electrode modules of CDI in a simple and effective assembly. All modules should allow free path to liquids as in regular FTCs. In order to attain high adsorption efficiency, all of the impure liquid must be subjected to the static electric field built within the electrode modules. This means that the fluid must pass between the charged electrodes and there is no bypath for the un-treated liquid to escape, as well as no concealment in the container of FTC for the liquid to remain un-treated. Thus, simple assemblies as normally used for capacitors, for example, spiral winding and parallel stacking, are adopted to make FTCs to fit into the housings of desirable shapes and dimensions in a liquid-treating system. To fit the shapes of various housings

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fully automatic and energy-efficient deionizer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fully automatic and energy-efficient deionizer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fully automatic and energy-efficient deionizer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3209854

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.