Full scale calibration of analog-to-digital conversion

Coded data generation or conversion – Converter calibration or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C341S118000, C341S155000

Reexamination Certificate

active

06407685

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates in general to the field of analog-to-digital converters (ADCs), and in particular, by way of example but not limitation, to digital calibration of ADCs in which the calibration may be accomplished with dynamic estimation of reference signals that have unknown parameters and/or that have amplitude swings that exceed the full swing of the ADC.
2. Description of Related Art
The natural world operates in an analog domain, but information signals (voice, data, etc.) may frequently be processed, transmitted, or otherwise manipulated more efficiently in the digital domain. The conversion from the analog domain to the digital domain is accomplished with ADCs. An ADC receives as input an analog signal and produces as output a digital signal. However, some information present in the analog signal is necessarily lost during the conversion process even if an ADC is operating in an ideal manner. Unfortunately, real-world ADCs do not operate in an ideal manner. Consequently, the digital output of a real-world ADC does not track the analog input even as accurately as an ideal ADC.
It is therefore beneficial to make and/or tune real-world ADCs to approximate ideal ADCs. Techniques have been developed to calibrate real-world ADCs so as to modify their performance to emulate ideal ADCs as closely as possible. For example, ADCs are traditionally calibrated using high precision digital voltmeters to characterize the errors that result from digitizing static or slowly varying analog reference voltages. The outcome from this static testing forms the basis for a hardware or software implemented calibration scheme. Another method of conventional ADC calibration is the use of a sinusoidal reference signal. The reference is sampled, and estimations of the ideal sample values are calculated. These estimations are calculated using a minimum squared error criterion that requires knowledge of the frequency of the calibration signal. The errors (i.e., the difference between the estimated values and the actual sampled values output by the ADC being calibrated) are then used to build a correction table. The correction table may subsequently be used to modify sampled values of actual (e.g., non-calibration, functional, etc.) analog input signals.
Efficient calibration schemes require that the reference signal be dynamically estimated on a sample-by-sample basis during the ADC calibration period(s). No method currently exists for dynamic estimation of a reference signal (e.g., a calibration signal) with one or more unknown parameters (e.g., frequency, phase, etc.) during an ADC calibration. Hence, existing calibration procedures rely on accurate and costly signal generators and/or precise and expensive measuring components.
The Parent Application (U.S. application Ser. No. 09/196,811) of this Continuation-in-Part Application remedies the above-described problems that existed in previous calibration procedures, as explained hereinbelow. In fact, the deficiencies of the prior art are overcome by the methods and arrangements of the Parent Application. For example, as theretofore unrecognized, it would be beneficial to enable calibration of ADCs using a reference signal of a given waveform type, but with unknown parameters. In fact, it would be beneficial if such a calibration procedure could also be accomplished in real-time using overflow processing capacity of a system in which a single ADC is employed. The invention of the Parent Application provides these benefits.
However, other problems still exist that are not solved by the invention of the Parent Application. For example, using an input signal (e.g., a sine wave) that has an amplitude that does not equal the full scale input range of the ADC can result in a poor calibration. If the amplitude of the input signal is less than the full swing of the ADC, then all quantization levels of the ADC will not be excited; consequently, the ADC will have a loss in performance that results from not being fully calibrated. If, on the other hand, the amplitude of the input signal is greater than the full swing of the ADC, then the calibration of the ADC can be erroneous. Furthermore, due to the fact that nonlinearity and offset errors are unique to each ADC specimen, exactly matching the amplitude of the input signal to the full swing of the ADC is difficult and/or expensive.
SUMMARY OF THE INVENTION
The deficiencies of the prior art are overcome by the methods and arrangements of the present invention. For example, as heretofore unrecognized, it would be beneficial to enable calibration of ADCs using a reference signal that exceeds the full swing of the ADC but does not cause an erroneous calibration. In fact, it would be beneficial if such a calibration procedure could also be accomplished in real-time using overflow processing capacity of a system in which an ADC is employed.
These and other benefits are achieved by the methods and arrangements of the present invention, which may optionally be used in synergistic conjunction with the invention of the Parent Application. Additional benefits of the invention of this Continuation-in-Part Application may therefore be achieved by combining the mutual inventive concepts. To that end, in the overall present invention, ADCs may be calibrated using an analog calibration signal that is easy to generate (e.g., a sinusoidal signal). The present invention, however, is equally applicable to other calibration signals as well, such as saw-tooth and triangle waves. Advantageously, a calibration scheme in accordance with the principles of the present invention is independent of the actual parameters of the calibration signal (e.g., amplitude, frequency, initial phase, etc. for a sinusoidal-type calibration signal). Relevant parameters of an applied calibration signal that are needed for a calibration are calculated from the converted digital data.
In one embodiment, the present invention may be composed of several exemplary operational components in order to enable the calibration of an ADC without knowing all of the parameters of a calibration signal. An estimator calculates estimates of relevant parameter(s) (e.g., the frequency) of a calibration signal of a known waveform type from the digital outputs of an ADC. A filter utilizes the temporal information and at least one variable related to the estimated parameter(s) of the calibration signal to reconstruct the calibration signal in the digital domain. Also, a table generator calculates correction table entries from the ADC output and the reconstructed calibration signal.
In another embodiment, the present invention may be composed of several exemplary operational components in order to enable the calibration of an ADC using a calibration signal that exceeds the dynamic range of the ADC. An estimator calculates estimates of relevant parameter(s) (e.g., the frequency) of a calibration signal of a known waveform type from the digital outputs of an ADC. A non-linear processor (NLP) may utilize at least one variable related to one or more of the estimated parameter(s) of the calibration signal to reconstruct (e.g., interpolate the clipped portions of) the calibration signal in the digital domain, regardless of whether the calibration signal exceeds the ADC's full scale input range. A filter utilizes at least one variable related to the estimated parameter(s) of the calibration signal to reconstruct the calibration signal in the digital domain from the output of the NLP. Also, a table generator calculates correction table entries from the ADC output and the reconstructed calibration signal, optionally truncated to the ADC's output range by a non-linear function (NLF). For yet another embodiment, it should be noted that the estimator, for example, need not be included whereby the filter and the NLP can use a known parameter(s) of the calibration signal instead of an estimated one(s).
The above-described exemplary components may be implemented in either hardware, software, or some combin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Full scale calibration of analog-to-digital conversion does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Full scale calibration of analog-to-digital conversion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Full scale calibration of analog-to-digital conversion will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2929928

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.