Full-color hologram and method of producing the same

Optical: systems and elements – Holographic system or element – For producing or reconstructing images from multiple holograms

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S003000, C359S024000, C359S027000

Reexamination Certificate

active

06404518

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a full-color hologram and a method of producing the same. More particularly, the present invention relates to a full-color hologram capable of generating a bright image and reproducing colors in all color regions with favorable reproducibility and also relates to a method of producing the full-color hologram.
Conventionally, a hologram original plate for color holograms and a duplicate thereof are made by multiple recording or multilayer recording using three laser light having three wavelengths in the three primary color regions of blue, green and red, i.e. 400 nm to 500 nm (blue), 500 nm to 600 nm (green), and 600 nm to 700 nm (red).
Meanwhile, a proposition is made in Applied Optics Vol. 12, No. 3, pp. 496-499 to form a multicolor hologram from holograms recorded separately by using laser light of four wavelengths, i.e. 476.2 nm, 520.8 nm, 568.2 nm and 632.8 nm.
When a color hologram recorded with the above-described three wavelengths is illuminated with a white light source to reconstruct a holographic image, colors cannot satisfactorily be reproduced. Therefore, the reconstructed image is inferior in color tone reproduction and unfavorably dark.
Methods for producing holograms capable of generating bright images include one that uses a wavelength (550 nm to 560 nm) in the vicinity of the peak wavelength 555 nm of a spectral luminous efficiency curve as a reconstruction wavelength for green. However, when a wavelength in the range of 550 nm to 560 nm is recorded as a reconstruction wavelength in the green region, if the reconstruction wavelength for blue is 458 nm, as shown in
FIG. 11
, blue green in the chromaticity diagram cannot be reproduced. If 488 nm is used as a reconstruction wavelength for blue, the full shade of blue cannot be reproduced. It is very difficult with the recording using three wavelengths to realize satisfactory color reproduction such as to express colors in all color regions divided into 23 sections on the chromaticity diagram (in the chromaticity diagram, it is possible to reproduce only colors within a triangle formed by connecting three wavelengths with straight lines. In
FIG. 11
, 630 nm is used as a reconstruction wavelength for red. It should be noted that the chromaticity diagram is quoted from “JIS Handbook Color”).
On the other hand, the above-described proposition to record a multicolor hologram by using four wavelengths considers mainly white color reproduction and makes no proposition concerning how to select recording wavelengths to construct a full-color hologram capable of generating a bright image and reproducing colors in all color regions.
SUMMARY OF THE INVENTION
The present invention was made in view of the above-described problems with the prior art. An object of the present invention is to provide a full-color hologram recorded with four wavelengths, which is capable of generating a bright image and reproducing colors in all color regions, and also provide a method of producing the full-color hologram.
To attain the above-described object, the present invention provides a full-color hologram formed by multiple recording or multilayer recording with four different dominant wavelengths for reconstruction. The full-color hologram has one reconstruction wavelength in the vicinity of the peak wavelength 555 nm of the spectral luminous efficiency curve, i.e. in the range of 550 nm to 560 nm, and further has three other reconstruction wavelengths in the three primary color regions of red, blue and green, i.e. in the three regions of 615 nm to 680 nm, 380 nm to 470 nm, and 485 nm to 515 nm, respectively.
In addition, the present invention provides a method of producing a full-color hologram. The full-color hologram is formed by multiple recording or multilayer recording with four different dominant wavelengths for reconstruction. The full-color hologram has one reconstruction wavelength in the vicinity of the peak wavelength 555 nm of the spectral luminous efficiency curve, i.e. in the range of 550 nm to 560 nm, and further has three other reconstruction wavelengths in the three primary color regions of red, blue and green, i.e. in the three regions of 615 nm to 680 nm, 380 nm to 470 nm, and 485 nm to 515 nm, respectively. In the full-color hologram producing method, as one recording wavelength in the green region, 514.5 nm from an argon laser or 532 nm from an LD pumped laser is used, and as another recording wavelength in the green region, a wavelength not shorter than 555 nm is used.
In this case, it is desirable that as the another recording wavelength in the green region, a wavelength in the range of 565 nm to 590 nm should be used, and that the reconstruction wavelengths should be shifted 15 nm to 40 nm to the shorter wavelength side by shrinkage of a photosensitive material after recording or by wavelength shift effected by a pressure-sensitive adhesive.
As the another recording wavelength in the green region, a wavelength in the range of 565 nm to 600 nm from a dye laser may be used.
In addition, the present invention provides another method of producing a full-color hologram. The full-color hologram is formed by multiple recording or multilayer recording with four different dominant wavelengths for reconstruction. The full-color hologram has one reconstruction wavelength in the vicinity of the peak wavelength 555 nm of the spectral luminous efficiency curve, i.e. in the range of 550 nm to 560 nm, and further has three other reconstruction wavelengths in the three primary color regions of red, blue and green, i.e. in the three regions of 615 nm to 680 nm, 380 nm to 470 nm, and 485 nm to 515 nm, respectively. The full-color hologram is made by holographic duplication from a hologram original plate. In the full-color hologram producing method, the hologram original plate is formed from a stack of four layers of photosensitive material, each layer containing a hologram recorded for each corresponding wavelength.
In addition, the present invention provides a further method of producing a full-color hologram. The full-color hologram is formed by multiple recording or multilayer recording with four different dominant wavelengths for reconstruction. The full-color hologram has one reconstruction wavelength in the vicinity of the peak wavelength 555 nm of the spectral luminous efficiency curve, i.e. in the range of 550 nm to 560 nm, and further has three other reconstruction wavelengths in the three primary color regions of red, blue and green, i.e. in the three regions of 615 nm to 680 nm, 380 nm to 470 nm, and 485 nm to 515 nm, respectively. The full-color hologram is made by holographic duplication from a hologram original plate. In the full-color hologram producing method, the hologram original plate is formed as follows. A wavelength in the red region and one wavelength in the green region are recorded in the same layer of photosensitive material. A wavelength in the blue region and another wavelength in the green region are recorded in the same layer of photosensitive material that is different from the first-mentioned layer. The two layers are stacked on top of each other to form a hologram original plate.
In addition, the present invention provides a still further method of producing a full-color hologram. The full-color hologram is formed by multiple recording or multilayer recording with four different dominant wavelengths for reconstruction. The full-color hologram has one reconstruction wavelength in the vicinity of the peak wavelength 555 nm of the spectral luminous efficiency curve, i.e. in the range of 550 nm to 560 nm, and further has three other reconstruction wavelengths in the three primary color regions of red, blue and green, i.e. in the three regions of 615 nm to 680 nm, 380 nm to 470 nm, and 485 nm to 515 nm, respectively. The full-color hologram is made by holographic duplication from a hologram original plate. In the full-color hologram producing method, the hologram original plate is formed as follows. A wavelength in the red region is recorded i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Full-color hologram and method of producing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Full-color hologram and method of producing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Full-color hologram and method of producing the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2919614

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.