Fuel tank intake assembly

Fluent material handling – with receiver or receiver coacting mea – Filling means with receiver or receiver coacting means – Supply means carried receiver flow control opening means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S312000, C141S301000, C141S369000, C141S372000, C220S086200, C220S254800, C220SDIG003

Reexamination Certificate

active

06408903

ABSTRACT:

BACKGROUND OF THE INVENTION
Intake fittings for the fuel tanks of motor vehicles are, as a rule, closed with a tank cap. To fill the tank with fuel, the tank cap must be opened. When this is done, the soiling of the hands, especially with diesel fuel, is not always to be avoided. In order to prevent such soiling and generally to increase tank friendliness, intake fittings have been proposed which possess no screw-on or clip-on tank caps but exhibit a locking cap, which, when impelled by a penetrating fuel hose nozzle, swings inward against the action of a spring. In its closed position, the closure flap lies on a sealed seat.
In order to prevent an unwarranted opening of the closure flap, DE 198 02 592 disclosed an intake fitting provided with a locking arrangement of the closure flap. In this arrangement, the closure flap is provided on its inner side with a catch having a reach-through opening. By means of a radial boring in the intake fitting, a locking pin passes through to the inside, there engaging in a recess of the catch. Thus, the closure cap is locked in its closed position. The disadvantage of this is that additional sealing means are necessary.
In the conventional intake fittings, the sidewall of the fitting possesses an opening from an axle boring. Between the outer wall of the intake fitting and this entry is a sealing ring to prevent the escape of fuel vapors. In the interior of the intake fitting, between the forward end of the axle, which forms the locking bolt and an inwardly extending section thereof, the installation of a sealing ring has been arranged. In spite of this complex and expensive sealing measure, an escape of fuel vapor is still not entirely prevented.
OBJECTIVES AND SUMMARY OF THE INVENTION
Thus, an objective of the invention is to propose an intake fitting with a closure flap with improvements to prevent the escape of fuel vapor.
The object is achieved by an intake fitting possessing the features of the invention. In accord with this, there has been provided a locking mechanism on the outer side of the closure flap which, in the closed position, stands in contact with the ambient atmosphere. Because of this construction, the locking mechanism is accessible from the outside so that a penetration through the intake fitting, as taught by DE 198 02 592 with its attendant disadvantages, especially in regard to the escape of fuel vapors, is no longer necessary. The locking mechanism, which, for example, can be installed in a conventional intake fitting, prevents an unauthorized opening without increasing the escape of fuel vapors.
In a preferred embodiment, there is at least one locking element installed on the closure flap, whereby the flap is hingedly movable between a position of full closure and a free opening. In the locked position, the concept is that an apparatus arrests the closure flap in a closed position; i.e., a co-action is in effect between a detent engaging an arresting means in the direction of the longitudinal centerline axis of a seat for a sealing element. The longitudinal centerline axis of the sealing element is, of course, also the centerline axis of the intake fitting. With this embodiment, of course, the essential elements of the closure flap locking mechanism are already in place, so that limitations of design measures in the adjacent bodywork are minimized. Essentially, a body-side initiation for the activation of the locking mechanism is provided, wherein this activation drive can be supplied by very simple measures, i.e., in the form of a Bowden cable or the like.
Advantageously, a spring element is provided, which loads the locking mechanism in essentially an axial direction when the locking mechanism is in the locked position. Accordingly, the closure flap is pressed against the seat of the sealing element and pressure increases the impermeability at that location. Tolerance variations in manufacture are compensated for by the spring. Advantageously, the rim which circumferentially surrounds the opening of the intake fitting also serves as the detent for the opening. This design is particularly advantageous in consideration of the expense of manufacture. In this way, the installation, or the molding on, of additional abutting detents can be dispensed with.
The spring element, in the case of a particularly favored embodiment, is designed as an annular spring circumferentially placed about the rim of the opening and compressible in an axial direction. An annular spring of this design permits, in a relatively simple way, its affixation on the opening rim in both radial and axial directions. Furthermore, the annular spring can be so constructed that it exercises the same spring force at each point of its circumference on a co-acting locking mechanism.
In an advantageous embodiment, on the end of the annular spring which leads its motion, an axial movable slider ring is installed. The side of this slider ring, which is remote from the spring, is spring loaded in the locking position of the locking mechanism. Advantageously, an annular spring, somewhat of the order of a circumferentially, accordion pleated, leaf spring can be employed, which would also exhibit a pre-domed section in its axial direction. By means of the slide ring, first, a circumferential distribution of the spring force is assured, and second, the uniform co-action with a locking element at a practically optional point on the circumference can be effected.
In the case of a further, preferred embodiment, two locking elements are provided, which are constructed as pivoting arm locking components. These locking elements can be pivoted within a pivot plane somewhat parallel to and at an axial distance from the extended plane of the opening rim. In a case with two annular springs, a symmetrical compression becomes possible if the pivoting arms engage the opening rim with their outer lying locking ends, that is, the slider ring, at diametrically oppositely disposed points. In doing this, it is advantageous if the inner lying ends of the pivoting arms overlap and are penetratively joined by a common axle in the center of the closure flap in such a way that they are thus coaxial with the pivoting axle, which in turn is coaxial to the center axis of the intake fitting.
In order to make the opening of the closure flap possible, it is necessary that the pivoting arms, in their released position, be so positioned on the outside of the closure flap that this flap can unobstructedly be swung inwardly into the intake fitting by the fuel hose nozzle. This advantage is achieved by the fact that the pivoting axle is movable in a continuous radial direction, symmetrical to the pivoting arms. Thus, the movement of the pivot axle is coupled with the movement of pivoting arms. If the pivoting axle starting from the locked condition moves radially outward,somewhat through a body side activation element, then at the same time the pivot arms are swung inward, they become positioned centrally on the outside of the closure flap in such a manner that their respective opening movements are not obstructed. The radial movement of the pivoting axle and the pivoting of the pivot arms are preferably realized in that the former with at least one end engages in a radially running guide groove. The latter with respectively one control pin engages into a control groove in the plane of the guide groove, which runs at an angle to the plane. These grooves are in this arrangement so positioned that they enclose between them an angle opening toward the center axis.
In an advantageous positioning of the pivoting arms, from the point of view of manufacturing technology, these arms are between two bearing plates running parallel to the pivoting plane of the arms. In the inner surfaces of the bearing plates are, respectively, one guide groove and two control grooves. During the assembly, the parts can simply be set, one into the other, wherein the pivoting axle has its ends engaged in the guide grooves and the pivoting arms have their control pins running in the control grooves.
Additional measures for

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fuel tank intake assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fuel tank intake assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fuel tank intake assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2902810

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.